
CHIRON CHIRON

CAMPRO

2-Methyl and 3-methyl hopanes

Three kind of C31 methylhopanes have been identified as constituents of ancient sediments and oils. These are 2α -, 2β -, and 3β -methylhopanes.

H H H

8632.31: 2β ,17 α (H),21 β (H)-2-Methylhopane

8629.31: 3β ,17 α (H),21 β (H)-3-Methylhopane

Available methylhopans from Chiron:

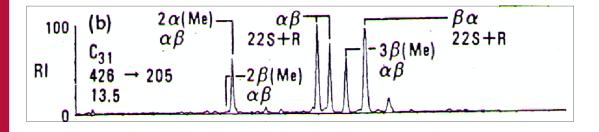
	2-Methylhopanes
8632.31-10UG	2β,17α(H),21β(H)-2-Methylhopane
9077.31-10UG	$2\alpha+2\beta,17\alpha(H),21\beta(H)-2$ -Methylhopane (ca 1:3)
	3-Methylhopanes
8628.31-10UG	$3\beta,17\alpha(H),21\alpha(H)-3$ -Methylhopane
8629.31-10UG	3β,17α(H),21β(H)-3-Methylhopane
8630.31-10UG	3β,17β(H),21α(H)-3-Methylhopane
8631.31-10UG	3β,17β(H),21β(H)-3-Methylhopane
3541.6-KIT	2- and 3-Methylhopanes Kit (8632.31,9077.31,8628.31,8629.31,8630.31,8631.31)

All methylhopanes are supplied as approx. 10 μg in convenient 300 μL GC-vials for dilution to e.g. 50-100 $\mu g/mL$ (qualitative standard).

page 1 of 2

Origin of methylhopanes

Triterpanoids from the hopane family isolated from living organisms ("biohopanoids") are typically derived from the C30 17 β ,21 β framework. They are the precursors of the many hopanoids encountered in sediments ("geohopanoids") which often possesses the thermodynamically more stable 17 α ,21 β configuration and to a lesser extent 17 β ,21 α . Methylhopanes are typically present at between 2 and 10% of the abundance of hopanes in oils and rock sources. ^{1,2,3}


Minor members possessing an additional methyl group attached at position 2β (axial position) or 3β (equatorial position) of the 17β , 21β skeleton have also been isolated from a few bacteria. These are the assumed precursors of the 2-methyl and 3-methyl hopanoids. Because the equatorial alkyl groups are thermodynamically most stable, the fossil hopanes are mixtures dominated by 2α (Me) and 3β (Me).

In the case of 3-methylhopanoids, only $3\beta(Me)$ have been encountered, whereas a mix of $2\alpha(Me)$ and $2\beta(Me)$ appeared in younger sediments. In more mature sediments, only the $2\alpha(Me)$ isomers

Chromatographic behavior of methylhopanes

Both of the 2-methylhopanes elutes with similar retention time on an non-polar Ultra-1 column. The 2β -methylhopane virtually coelutes with hopane, while 2α -methylhopane elutes on the trailing side and is incompletely resolved from hopane.

The 3β -methylhopane elutes with a significantly longer retention time and at a point midway between (22R)-17 α (H),21 β (H)-homohopane and (22R+22S)-17 β (H),21 α (H)-homohopanes. On a moderately polar BP-10 column, the 2 β -methylhopane just preceded 2 α -methylhopane and both eluted before 17 α (H),21 β (H)-hopane. This observation of a reversal in relative elution positions of hopanes and methylhopanes on columns of different polarities reduces the chance of error in compound identification. 4

Literature

- 1) P Stampf *et al*: 2α-Methylhopanoids: First recognition in the Bacterium *Methylobacterium organophilum* and obtention via sulphur induced isomerization of 2β-methylhopanoids; Tetrahedron, Vol 47, No 34, pp 7081-7090. 1991
- 2) R.E. Summons and L.L. Jahnke: Identification of the methylhopanes in sediments and petroleum; Geochimica et Cosmochimica Acta, vol 54, pp 247-251, 1990
- 3) Farrimond, P. *et al:* Methylhopanes as source markers and a novel petroleum correlation tool; 23rd Int. Meeting on Organic Geochemistry, 2007.
- 4) Biological markers in sediments and petroleum, J.M. Moldowan et al (editors), p. 182-200, Englewood Cliffs, New Jersey (1992), Prentice Hall

page 2 of 2