

# Environmental and Process Water

Proficiency Testing and Reference Materials

2022–2023 Product Catalog



# COMMITMENT TO QUALITY

For more than 40 years, ERA™ has been providing analytical laboratories and organizations with the products and services required to eliminate inaccurate results. Laboratories globally rely on ERA's products to be integrated into their quality programs to ensure total confidence in their data analysis.

Our comprehensive range of Proficiency Testing (PT) programs and Certified Reference Materials (CRMs) are designed to provide you with confidence that your data is valid and defensible. Whether complying with regulatory requirements or internal quality programs, you can depend on ERA to support your efforts in providing sound, well documented data so you can have confidence in your decisions.

## Then and Now – 25 Years in Continued Quality Commitment



(left to right)
Lisa Berry, Dale Shallenberger, Curtis Wood, and Craig Huff

### **CONTENTS**

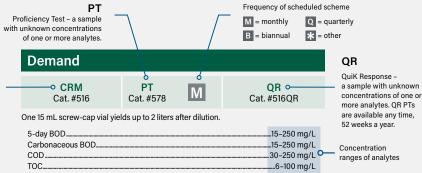
#### Environmental

| Proficien | ncy Testing Scheme Schedule 2022–23 | 6  |
|-----------|-------------------------------------|----|
| Products  | 5                                   |    |
|           | Water Pollution                     | 8  |
|           | DMR-QA                              | 21 |
|           | Water Supply                        | 22 |
|           | Microbiology                        | 32 |
|           | Soil                                | 36 |
|           | Underground Storage Tank (UST)      | 46 |
|           | Air & Emissions                     | 52 |
|           | Radiochemistry                      | 58 |
|           | Low-Level CRMs                      | 64 |
|           | Custom Standards                    | 70 |
|           | Calibration Standards               | 74 |
|           | Reagents                            | 80 |

#### **Process Water**

| rotal Organic Carbon Standards |     |
|--------------------------------|-----|
| ANATEL TOC                     | 88  |
| Sievers TOC                    | 9   |
| Analytik Jena TOC              | 93  |
| OI Analytical TOC              | 94  |
| Shimadzu TOC                   | 96  |
| Teledyne Tekmar TOC            | 97  |
| Other TOC Instruments          | 98  |
| Consumables                    | 99  |
| Cleaning Validation Products   | 100 |
| Other Reference Standards      |     |
| Inorganic Carbon               | 10  |
| Turbidity                      | 10  |
| High-Purity Water              | 102 |
| pH Buffers                     | 102 |
| Conductivity Standards         | 103 |

| New   | and Reformulated                  | <b>Products</b> |
|-------|-----------------------------------|-----------------|
| Cat # | Product                           | Product Type    |
| 597   | 1,4-Dioxane (WP)                  | PT14            |
| 402   | 1,4-Dioxane (WP)                  | CRM14           |
| 402QR | 1,4-Dioxane (WP)                  | QR14            |
| 272   | 1,4-Dioxane (WS)                  | PT27            |
| 689   | 1,4-Dioxane (WS)                  | CRM27           |
| 689QR | 1,4-Dioxane (WS)                  | QR27            |
| 461   | 1,4-Dioxane Soil                  | PT39            |
| 538   | 1,4-Dioxane Soil                  | CRM39           |
| 538QR | 1,4-Dioxane Soil                  | QR39            |
| 598   | PFAS (Non-Potable Water (WP)      | PT15            |
| 403   | PFAS (Non-Potable Water (WP)      | CRM15           |
| 403QR | PFAS (Non-Potable Water (WP)      | QR15            |
| 960   | PFAS Drinking Water               | PT28            |
| 735   | PFAS Drinking Water               | CRM28           |
| 735QR | PFAS Drinking Water               | QR28            |
| 462   | PFAS Soil                         | PT41            |
| 604   | PFAS Soil                         | 41              |
| 604QR | PFAS Soil                         | QR41            |
| 929   | PFAS Ground Water & Surface Water | PT28            |
| 731   | PFAS Ground Water & Surface Water | CRM28           |
| 731QR | PFAS Ground Water & Surface Water | QR28            |
| 584   | Simple Nutrients (WP)             | 10              |
| 505   | Simple Nutrients (WP)             | 10              |
| 505QR | Simple Nutrients (WP)             | QR10            |
| 833   | Base/Neutrals (WP)                | 16              |
| 711   | Base/Neutrals (WP)                | 16              |
| 711QR | Base/Neutrals (WP)                | QR16            |
| 873   | Anions in Soil                    | 9T39            |
| 543   | Anions in Soil                    | 39              |
| 543QR | Anions in Soil                    | QR39            |
| 620   | Metals in Soil                    | 38              |
| 540   | Metals in Soil                    | 38              |
| 540QR | Metals in Soil                    | QR38            |
| 467   | Base/Neutrals & Acids in Soil     | 41              |
| 727   | Base/Neutrals & Acids in Soil     | 41              |
| 727QR | Base/Neutrals & Acids in Soil     | QR41            |
| 588   | Cyanide (WP)                      | 13              |
| 502   | Cyanide (WP)                      | 13              |
| 502QR | Cyanide (WP)                      | QR13            |


#### Sales Information and Indexes

| Distributors, Sales Partners, and Subscription Services105 |   |  |  |
|------------------------------------------------------------|---|--|--|
| Environmental Part Number Index106                         | 3 |  |  |
| Environmental Product Index112                             | 2 |  |  |
| Analyte Index114                                           | 4 |  |  |
| Process Water Product Index118                             | 3 |  |  |
| Glossary                                                   | C |  |  |



CRM

Certified Reference Material (includes a Certificate of Analysis)



# DELIVERING CONTINUOUS SUPPORT

Environmental Resource Associates (ERA) is founded in Chicago, Illinois by Mark Carter and Terry Epstein as a reference materials provider for environmental laboratories

ERA receives ISO 9001 certification

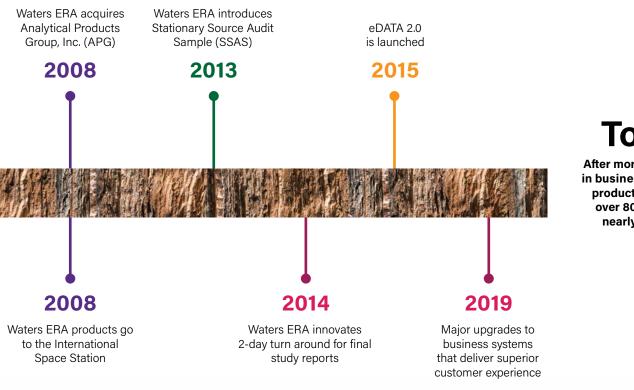
Process standards product line is launched including reference materials for total organic carbon and conductivity ERA is acquired by Waters™ Corp, the worldwide leader in liquid chromatography, mass spectrometry and thermal analysis

1977

1993

2000

2006


1982

Analytical Products Group, Inc. (APG) is founded in Marietta, Ohio as a proficiency testing provider 1999

ERA achieves PT provider accreditation by NIST/NVLAP for EPA approved studies 2006

ERA opens
international office in
Manchester, UK offering
reference materials
to laboratories
throughout Europe





#### **Today**

After more than 40 years in business, Waters ERA products are in use in over 80 countries by nearly 13,000 labs



# 2022 Proficiency Testing Scheme Schedule

| Air & Emissions |          |        |        |  |
|-----------------|----------|--------|--------|--|
|                 | Scheme # | Opens  | Closes |  |
| Q               | AE 59    | Jan 31 | Mar 17 |  |
| Q               | AE 60    | Apr 25 | Jun 9  |  |
| Q               | AE 61    | Jul 29 | Sep 12 |  |
| Q               | AE 62    | Oct 28 | Dec 12 |  |

| MRAD    |        |        |  |  |
|---------|--------|--------|--|--|
| Scheme# | Opens  | Closes |  |  |
| MRAD 36 | Mar 21 | May 20 |  |  |
| MRAD 37 | Sep 19 | Nov 18 |  |  |

2 schemes per year - open for 60 days

| Radiochemistry |          |        |        |  |
|----------------|----------|--------|--------|--|
|                | Scheme # | Opens  | Closes |  |
| Q              | RAD 128  | Jan 10 | Feb 24 |  |
| Q              | RAD 129  | Apr 4  | May 19 |  |
| Q              | RAD 130  | Jul 11 | Aug 25 |  |
| Q              | RAD 131  | Oct 7  | Nov 21 |  |

| Soil (including UST in Soil) |          |        |        |
|------------------------------|----------|--------|--------|
|                              | Scheme # | Opens  | Closes |
| Q                            | SOIL 117 | Jan 24 | Mar 10 |
| Q                            | SOIL 118 | Apr 18 | Jun 2  |
| Q                            | SOIL 119 | Jul 25 | Sep 8  |
| Q                            | SOIL 120 | Oct 21 | Dec 5  |

| Water Supply |          |        |              |
|--------------|----------|--------|--------------|
|              | Scheme # | Opens  | Closes       |
| Q            | WS 306   | Jan 10 | Feb 24       |
|              | WS 307   | Feb 7  | Mar 24       |
|              | WS 308   | Mar 7  | Apr 21       |
| Q            | WS 309   | Apr 4  | May 19       |
|              | WS 310   | May 9  | Jun 23       |
|              | WS 311   | Jun 6  | Jul 21       |
| Q            | WS 312   | Jul 11 | Aug 25       |
|              | WS 313   | Aug 8  | Sep 22       |
|              | WS 314   | Sep 6  | Oct 21       |
| Q            | WS 315   | Oct 7  | Nov 21       |
|              | WS 316   | Nov 1  | Dec 16       |
|              | WS 317   | Dec 5  | Jan 19, 2023 |

| Water Pollution (including UST in Water) |          |        |              |
|------------------------------------------|----------|--------|--------------|
|                                          | Scheme # | Opens  | Closes       |
| Q                                        | WP 324   | Jan 18 | Mar 4        |
|                                          | WP 325   | Feb 14 | Mar 31       |
|                                          | WP 326   | Mar 14 | Apr 28       |
| Q                                        | WP 327   | Apr 11 | May 26       |
|                                          | WP 328   | May 16 | Jun 30       |
|                                          | WP 329   | Jun 13 | Jul 28       |
| Q                                        | WP 330   | Jul 18 | Sep 1        |
|                                          | WP 331   | Aug 15 | Sep 29       |
|                                          | WP 332   | Sep 12 | Oct 27       |
| Q                                        | WP 333   | Oct 14 | Nov 28       |
|                                          | WP 334   | Nov 4  | Dec 19       |
|                                          | WP 335   | Dec 12 | Jan 26, 2023 |

| DMR-QA 42 |                      |                     |
|-----------|----------------------|---------------------|
| Scheme#   | Opens                | Closes              |
| DMR-QA 42 | Est. March TBD, 2022 | Est. July TBD, 2022 |

DMR-QA Study Open and Close dates determined by EPA



Need PT results fast? QuiK Response™ PTs are available on demand, 52 weeks a year. Plus, when you report in eDATA, you receive your final QuiK Response PT results instantly. Contact your Customer Service Representative or an authorized Waters ERA sales partner to place your QuiK Response order.



Schedule subject to change - see Waters ERA's website at eraqc.com.

**Q** Quarterly Study

For the latest products and information, please visit us online at eragc.com



# 2023 Proficiency Testing Scheme Schedule

| Air & Emissions |          |        |        |  |
|-----------------|----------|--------|--------|--|
|                 | Scheme # | Opens  | Closes |  |
| Q               | AE 63    | Jan 30 | Mar 16 |  |
| Q               | AE 64    | Apr 28 | Jun 12 |  |
| Q               | AE 65    | Jul 28 | Sep 11 |  |
| Q               | AE 66    | Oct 27 | Dec 11 |  |

| MRAD    |        |        |
|---------|--------|--------|
| Scheme# | Opens  | Closes |
| MRAD 38 | Mar 20 | May 19 |
| MRAD 39 | Sep 18 | Nov 17 |

2 schemes per year - open for 60 days

| Radiochemi | stry     |        |        |
|------------|----------|--------|--------|
|            | Scheme # | Opens  | Closes |
| Q          | RAD 132  | Jan 9  | Feb 23 |
| Q          | RAD 133  | Apr 10 | May 25 |
| Q          | RAD 134  | Jul 10 | Aug 24 |
| Q          | RAD 135  | Oct 6  | Nov 20 |

| Soil (including UST in Soil) |          |        |        |  |
|------------------------------|----------|--------|--------|--|
|                              | Scheme # | Opens  | Closes |  |
| Q                            | SOIL 121 | Jan 23 | Mar 9  |  |
| Q                            | SOIL 122 | Apr 24 | Jun 8  |  |
| Q                            | SOIL 123 | Jul 24 | Sep 7  |  |
| Q                            | SOIL 124 | Oct 20 | Dec 4  |  |

| Water Supply |          |        |              |
|--------------|----------|--------|--------------|
|              | Scheme # | Opens  | Closes       |
| Q            | WS 318   | Jan 9  | Feb 23       |
|              | WS 319   | Feb 6  | Mar 23       |
|              | WS 320   | Mar 6  | Apr 20       |
| Q            | WS 321   | Apr 10 | May 25       |
|              | WS 322   | May 8  | Jun 22       |
|              | WS 323   | Jun 5  | Jul 20       |
| Q            | WS 324   | Jul 10 | Aug 24       |
|              | WS 325   | Aug 7  | Sep 21       |
|              | WS 326   | Sep 5  | Oct 20       |
| Q            | WS 327   | Oct 6  | Nov 20       |
|              | WS 328   | Oct 31 | Dec 15       |
|              | WS 329   | Dec 4  | Jan 18, 2024 |

| Water Pollution (including UST in Water) |          |        |              |
|------------------------------------------|----------|--------|--------------|
|                                          | Scheme # | Opens  | Closes       |
| Q                                        | WP 336   | Jan 17 | Mar 3        |
|                                          | WP 337   | Feb 13 | Mar 30       |
|                                          | WP 338   | Mar 13 | Apr 27       |
| Q                                        | WP 339   | Apr 17 | Jun 1        |
|                                          | WP 340   | May 15 | Jun 29       |
|                                          | WP 341   | Jun 12 | Jul 27       |
| Q                                        | WP 342   | Jul 17 | Aug 31       |
|                                          | WP 343   | Aug 14 | Sep 28       |
|                                          | WP 344   | Sep 11 | Oct 26       |
| Q                                        | WP 345   | Oct 13 | Nov 27       |
|                                          | WP 346   | Nov 3  | Dec 18       |
|                                          | WP 347   | Dec 11 | Jan 25, 2024 |

| DMR-QA 43 |                      |                     |
|-----------|----------------------|---------------------|
| Scheme#   | Opens                | Closes              |
| DMR-QA 43 | Est. March TBD, 2023 | Est. July TBD, 2023 |

DMR-QA Study Open and Close dates determined by EPA



Need PT results fast? QuiK Response™ PTs are available on demand, 52 weeks a year. Plus, when you report in eDATA, you receive your final QuiK Response PT results instantly. Contact your Customer Service Representative or an authorized Waters ERA sales partner to place your QuiK Response order.



Schedule subject to change - see Waters ERA's website at eraqc.com.

Q Quarterly Study

For the latest products and information, please visit us online at eragc.com



# WATER POLLUTION

Matrices with high concentrations of analytes for testing water pollution or waste water. Standards may be used to satisfy PT requirements worldwide.



# Water Pollution (including UST in Water) PT Schedule 2022

|       | - 11 .1   |             |           |        |
|-------|-----------|-------------|-----------|--------|
| Water | Pollution | ı (includin | la HST in | Water) |

|   |          | ,      |              |
|---|----------|--------|--------------|
|   | Scheme # | Opens  | Closes       |
| Q | WP 324   | Jan 18 | Mar 4        |
|   | WP 325   | Feb 14 | Mar 31       |
|   | WP 326   | Mar 14 | Apr 28       |
| Q | WP 327   | Apr 11 | May 26       |
|   | WP 328   | May 16 | Jun 30       |
|   | WP 329   | Jun 13 | Jul 28       |
| Q | WP 330   | Jul 18 | Sep 1        |
|   | WP 331   | Aug 15 | Sep 29       |
|   | WP 332   | Sep 12 | Oct 27       |
| Q | WP 333   | Oct 14 | Nov 28       |
|   | WP 334   | Nov 4  | Dec 19       |
|   | WP 335   | Dec 12 | Jan 26, 2023 |

#### Water Pollution (including UST in Water)

|   | Scheme # | Opens  | Closes       |
|---|----------|--------|--------------|
| Q | WP 336   | Jan 17 | Mar 3        |
|   | WP 337   | Feb 13 | Mar 30       |
|   | WP 338   | Mar 13 | Apr 27       |
| Q | WP 339   | Apr 17 | Jun 1        |
|   | WP 340   | May 15 | Jun 29       |
|   | WP 341   | Jun 12 | Jul 27       |
| Q | WP 342   | Jul 17 | Aug 31       |
|   | WP 343   | Aug 14 | Sep 28       |
|   | WP 344   | Sep 11 | Oct 26       |
| Q | WP 345   | Oct 13 | Nov 27       |
|   | WP 346   | Nov 3  | Dec 18       |
|   | WP 347   | Dec 11 | Jan 25, 2024 |

Schedule subject to change – see Waters ERA's website at **eraqc.com** 

#### Contents

| Description                                | CRM  | PT     | QR     | Page |
|--------------------------------------------|------|--------|--------|------|
| 1 Liter Boston Round<br>Oil & Grease       | 818  | 582 M  | 518QR  | 11   |
| 1 Liter Oil & Grease                       | 518  | 582 M  | 518QR  | 11   |
| 1,4-Dioxane                                | 402  | 597 B  | 402QR  | 14   |
| Acidity                                    | 915  | 885 Q  | 915QR  | 13   |
| Acids                                      | 712  | 834 M  | 712QR  | 16   |
| Base/Neutrals                              | 711  | 833 M  | 711QR  | 16   |
| Boron                                      | 919  | 886 Q  | 919QR  | 14   |
| Bromide                                    | 769  | 887 Q  | 769QR  | 14   |
| BTEX & MTBE                                | 760  | 643 Q  | 760QR  | 14   |
| Carbamate Pesticides                       | 908  | 899 Q  | 908QR  | 17   |
| Chlordane                                  | 716  | 837 M  | 716QR  | 17   |
| Chlorinated Acid Herbicides                | 718  | 829 M  | 718QR  | 15   |
| Color                                      | 070  | 882 Q  | 070QR  | 13   |
| Complex Nutrients                          | 525  | 579 M  | 525QR  | 10   |
| Cyanide                                    | 502  | 588 M  | 502QR  | 13   |
| Demand                                     | 516  | 578 M  | 516QR  | 12   |
| Diesel Range Organics (DRO) in Water       | 764  | 641 Q  | 764QR  | 16   |
| Dissolved Oxygen                           | 213  | 212 Q  | 213QR  | 13   |
| EDB/DBCP/TCP                               | 692  | 562 Q  | 692QR  | 16   |
| Gasoline Range Organics<br>(GRO) in Water  | 762  | 640 Q  | 762QR  | 15   |
| Glycols in Water                           | 401  | 271 Q  | 401QR  | 16   |
| Hardness                                   | 507  | 580 M  | 507QR  | 10   |
| HEM/SGT-HEM                                | 519  | 489 Q  | 519QR  | 11   |
| Hexavalent Chromium                        | 984  | 898 M  | 984QR  | 12   |
| Lithium                                    | 4992 | 4990 🔹 | 4992QR | 12   |
| Low-Level Mercury                          | 931  | 896 Q  | 931QR  | 12   |
| Low-Level Nitroaromatics<br>& Nitramines   | 677  | 932 Q  | 677QR  | 16   |
| Low-Level PAHs                             | 715  | 836 Q  | 715QR  | 16   |
| Low-Level Total Residual<br>Chlorine (TRC) | 917  | 881 M  | 917QR  | 14   |
| Mercury                                    | 514  | 574 M  | 514QR  | 12   |
| Minerals                                   | 506  | 581 M  | 506QR  | 10   |
| Nitrite                                    | 770  | 888 M  | 770QR  | 10   |
| Nitrogen Pesticides                        | 674  | 487 Q  | 674QR  | 17   |

| Description                                       | CRM  | PT          | QR          | Page |
|---------------------------------------------------|------|-------------|-------------|------|
| Oil & Grease                                      | 504  |             |             | 11   |
| Oil & Grease Concentrate                          | 4122 | 4120 M      | 4122QR      | 11   |
| Organochlorine Pesticides                         | 713  | 831 M       | 713QR       | 17   |
| Organophosphorus<br>Pesticides (OPP)              | 665  | 934 Q       | 665QR       | 17   |
| PAHs-GC/GCMS                                      | 4882 | 4880 Q      | 4882QR      | 16   |
| PCBs in Oil                                       | 729S | 835S M      | 729SQR      | 15   |
| PCBs in Water                                     | 734S | 832S M      | 734SQR      | 15   |
| PCBs in Water Standards                           |      | see page 15 | for options |      |
| Perchlorate                                       | 1501 | 1500 Q      | 1501QR      | 13   |
| PFAS Non-Potable Water                            | 403  | 598 B       | 403QR       | 15   |
| pH                                                | 977  | 577 M       | 977QR       | 14   |
| QC Plus                                           |      | see page 19 | for options |      |
| Ready-to-Use CRMs                                 |      | see page 18 | for options |      |
| Settleable Solids                                 | 911  | 883 M       | 911QR       | 10   |
| Silica                                            | 775  | 890 Q       | 775QR       | 13   |
| Simple Nutrients                                  | 505  | 584 M       | 505QR       | 10   |
| Solids                                            | 499  | 241 M       | 499QR       | 10   |
| Solids Concentrate                                | 4032 | 4030 M      | 4032QR      | 10   |
| Surfactants-MBAS                                  | 776  | 892 Q       | 776QR       | 13   |
| Sulfide                                           | 071  | 891 M       | 071QR       | 13   |
| Sulfite                                           | 534  | 244 B       | 534QR       | 13   |
| Tin & Titanium                                    | 517  | 573 M       | 517QR       | 12   |
| Total Organic Halides (TOX)                       | 670  | 895 Q       | 670QR       | 13   |
| Total Petroleum Hydrocarbons<br>(TPH) in Water #1 | 600  | 642 Q       | 602QR       | 11   |
| Total Petroleum Hydrocarbons<br>(TPH) in Water #2 | 601  | 642 Q       | 602QR       | 11   |
| Total Phenolics (4-AAP)                           | 515  | 589 M       | 515QR       | 13   |
| Total Residual Chlorine (TRC)                     | 501  | 587 M       | 501QR       | 14   |
| Toxaphene                                         | 717  | 838 M       | 717QR       | 17   |
| Trace Metals                                      | 500  | 586 M       | 500QR       | 12   |
| Turbidity                                         | 777  | 893 M       | 777QR       | 13   |
| Uranium                                           | 4402 | 4400 Q      | 4402QR      | 12   |
| Volatile Aromatics                                | 4452 | 4450 Q      | 4452QR      | 14   |
| Volatile Solids                                   | 913  | 884 M       | 913QR       | 10   |
| Volatiles                                         | 710  | 830 M       | 710QR       | 14   |

CRM - Certified Reference Material

PT - Proficiency Testing

QR - QuiK Response

RM - Reference Material

All Waters ERA WP PTs open monthly (M), quarterly (Q), or biannually (B) unless otherwise noted. WP Lithium PTs open in February and August. Quarterly months are January, April, July, and October. Biannual months are January and July.

#### Minerals/Solids

#### Minerals

| CRM       | <b>PT</b> | M | <b>QR</b>   |
|-----------|-----------|---|-------------|
| Cat. #506 | Cat. #581 |   | Cat. #506QR |

One 500 mL whole-volume bottle is ready to analyze.

| Total alkalinity as CaCO <sub>3</sub> | 25-400 mg/L       |
|---------------------------------------|-------------------|
| Chloride                              | 35-275 mg/L       |
| Fluoride                              |                   |
| Potassium                             | 4–40 mg/L         |
| Sodium                                | 10–100 mg/L       |
| Specific conductance at 25 °C         | 200-1200 µmhos/cm |
| Sulfate                               | 5-125 mg/L        |
| Total dissolved solids at 180 °C      | 140-800 mg/L      |
| Total solids at 105 °C                | 140-800 mg/L      |

#### **Hardness**

| CRM PT QR Cat. #507 Cat. #580 M Cat. #507QR |
|---------------------------------------------|
|---------------------------------------------|

One 500 mL whole-volume bottle is ready to analyze.

| Calcium                               | 10–100 mg/L |
|---------------------------------------|-------------|
| Calcium hardness as CaCO <sub>3</sub> | 25-250 mg/L |
| Total hardness as CaCO <sub>3</sub>   | 40-415 mg/L |
| Magnesium                             | 4-40 mg/L   |
| Total suspended solids (TSS)          | 20-100 mg/L |

#### Settleable Solids

| CRM       | <b>PT</b> | M | <b>QR</b>   |
|-----------|-----------|---|-------------|
| Cat. #911 | Cat. #883 |   | Cat. #911QR |

One 60 mL poly bottle with a solid yields 1 liter after dilution. Use with EPA Method 160.5, Standard Methods 2540F, or other applicable method.

Settleable solids......5-50 mL/L

**CRM:** A reference material characterized by a metrologically valid procedure for one or more specified properties, accompanied by a reference material certificate that provides the value of the specified property, its associated uncertainty, and a statement of metrological traceability.

A complete listing of ERA's CRMs can be found on our Scope of Accreditation for general requirements for competence of reference material producers available at www.eraqc.com/AboutERA/Accreditations.

**PT:** A Proficiency Test (PT) is an analysis of what is often referred to as a blind sample or a sample with unknown concentrations of analytes for the purpose of evaluating a laboratory's analytical performance.

**QR:** Similar to a Proficiency Test, a QuiK Response (QR) is a sample with unknown concentrations. However, unlike a scheduled PT, QR is on-demand and available at any time. Plus, your results are returned within two business days. QuiK Response can be used as a bilateral PT as referenced in the IUPAC/CITAC guide: Selection and use of PT schemes for a limited number of participants – chemical analytical labs.

**RM:** A material, sufficiently homogeneous and stable with respect to one or more specified properties, which has been established to be fit for its intended use in a measurement process.

#### **Volatile Solids**

| CRM       | <b>PT</b> | M | <b>QR</b>   |
|-----------|-----------|---|-------------|
| Cat. #913 | Cat. #884 |   | Cat. #913QR |

One 12 mL screw-cap vial with a solid yields 1 liter after dilution. Use with EPA Method 160.4, Standard Methods 2540E, or other applicable method.

Total volatile solids......100-500 mg/L

#### **Solids Concentrate**

| CRM        | <b>PT</b>  | M | <b>QR</b>    |
|------------|------------|---|--------------|
| Cat. #4032 | Cat. #4030 |   | Cat. #4032QR |

One 24 mL screw-cap vial with a powder yields 1 liter of solution.

| Total solids at 105 °C           | 140-800 mg/L |
|----------------------------------|--------------|
| Total dissolved solids at 180 °C | 140-800 mg/L |
| Total suspended solids (TSS)     | 20-100 mg/L  |

#### Solids

| Jolius    |           |   |             |
|-----------|-----------|---|-------------|
| CRM       | <b>PT</b> | M | <b>QR</b>   |
| Cat. #499 | Cat. #241 |   | Cat. #499QR |

One 500 mL whole-volume bottle is ready to analyze.

| Total solids at 105 °C           | .140-800 mg/L |
|----------------------------------|---------------|
| Total dissolved solids at 180 °C | .140-800 mg/L |
| Total suspended solids (TSS)     | 20-100 mg/L   |

#### **Nutrients**

#### Simple Nutrients

ANALYTE

| CRM       | PT        | M   | QR          |
|-----------|-----------|-----|-------------|
| Cat. #505 | Cat. #584 | IVI | Cat. #505QR |

One 15 mL screw-cap vial yields up to 2 liters after dilution.

| Ammonia as N              | 1–20 mg/L    |
|---------------------------|--------------|
| Nitrate as N              | 2-25 mg/L    |
| Nitrate plus nitrite as N | 2.5-25 mg/L  |
| ortho-Phosphate as P      | 0.5-5.5 mg/L |
| Total nitrogen            | 3-45 mg/L    |

#### **Complex Nutrients**

| CRM       | PT        | М   | QR          |
|-----------|-----------|-----|-------------|
| Cat. #525 | Cat. #579 | IVI | Cat. #525QR |

One 15 mL screw-cap vial yields up to 2 liters after dilution.

| Total Kjeldahl nitrogen as N | 3-35 mg/L   |
|------------------------------|-------------|
| Total phosphorus as P        | 0.5-10 mg/L |

#### Nitrite

| Millile  |          |   |            |
|----------|----------|---|------------|
| CRM      | PT       | M | QR         |
| Cat #770 | Cat #888 |   | Cat #7700B |

One 15 mL screw-cap vial yields up to 2 liters after dilution.

#### Oil & Grease/Total Petroleum Hydrocarbons

When ordering Oil & Grease or Total Petroleum Hydrocarbons (TPH) PTs, please specify if you need a sample compatible with SPE.

#### Oil & Grease

#### CRM Cat. #504

#### Oil & Grease Concentrate

| CRM        | PT         | M   | QR           |
|------------|------------|-----|--------------|
| Cat. #4122 | Cat. #4120 | IVI | Cat. #4122QR |

One 24 mL screw-cap vial yields up to 2 liters after dilution. Use with EPA Method 1664, or other applicable method. Gravimetric analysis only.

Hexane Extractable Materials (O&G).....20-200 mg/L

#### 1 Liter Oil & Grease

| <b>CRM</b> | <b>PT</b> | М | QR          |
|------------|-----------|---|-------------|
| Cat. #518  | Cat. #582 |   | Cat. #518QR |
| Cal. #310  | Cat. #362 |   | Cat. #516QF |

One liter whole-volume glass bottle with a 33–430 thread is ready to analyze. For gravimetric and IR analyses.

Hexane Extractable Materials (O&G).....20-200 mg/L

#### 1 Liter Boston Round Oil & Grease

|  | CRM<br>Cat. #818 | <b>PT</b><br>Cat. #582 | M | <b>QR</b><br>Cat. #518QR |
|--|------------------|------------------------|---|--------------------------|
|--|------------------|------------------------|---|--------------------------|

One liter whole-volume glass bottle with a 33–400 thread is ready to analyze. For gravimetric and IR analyses.

Hexane Extractable Materials (O&G)......20-200 mg/L

#### **HEM/SGT-HEM**

CRM PT QR Cat. #519 Cat. #489 QR Cat. #519QR

One 5 mL flame-sealed ampule yields up to 2 liters after dilution. Use with EPA Method 1664, or other applicable method to measure hexane extractable material (HEM) and silica gel treated-HEM. Contains both hexadecane and stearic acid.

Note: If a NELAC compliant PT is required, use Cat. #582 or Cat. #4120.

| Hexane extractable material5-100 mg/l | L |
|---------------------------------------|---|
| Silica gel treated-HEM5-100 mg/l      | L |

#### Total Petroleum Hydrocarbons (TPH) in Water #1

| CRM       | PT        | Q | QR          |
|-----------|-----------|---|-------------|
| Cat. #600 | Cat. #642 |   | Cat. #602QR |

One liter whole-volume bottle is ready to analyze for TPH without interfering fatty acids. Use with EPA Methods 1664, 5520, or other applicable method.

Total petroleum hydrocarbons......20-200 mg/L

#### Total Petroleum Hydrocarbons (TPH) in Water #2

| CRM       | <b>PT</b> | Q | <b>QR</b>   |
|-----------|-----------|---|-------------|
| Cat. #601 | Cat. #642 |   | Cat. #602QR |

One liter whole-volume bottle is ready to analyze for TPH in the presence of interfering fatty acids. Use with EPA Methods 1664, 5520, or other applicable method.

Total petroleum hydrocarbons......20-200 mg/L

CRM - Certified Reference Material

PT - Proficiency Testing

QR - QuiK Response

All Waters ERA WP PTs open monthly (M) or quarterly (Q) unless otherwise noted

Quarterly months are January, April, July, and October.





Melissa Coyner
Director of Sales and Marketing

#### Demand

#### Demand

 CRM
 PT
 QR

 Cat. #516
 Cat. #578
 M
 Cat. #516QR

One 15 mL screw-cap vial yields up to 2 liters after dilution.

| 5-day BOD        | 18-230 mg/L |
|------------------|-------------|
| Carbonaceous BOD | 18-230 mg/L |
| COD              | 30-250 mg/L |
| TOC              | 6-100 mg/L  |

#### Metals (continued)

#### **Hexavalent Chromium**

CRM PT QR
Cat. #984 Cat. #898 M Cat. #984QR

One 15 mL screw-cap vial yields up to 2 liters after dilution. Use with IC or colorimetric methods.

Hexavalent chromium 90-900 µg/L



#### Metals

#### **Trace Metals**

 CRM
 PT
 QR

 Cat. #500
 Cat. #586
 M
 Cat. #500QR

One 15 mL screw-cap vial yields up to 1 liter after dilution. Use with AA, ICP-OES or ICP-MS and selected colorimetric methods.

| Aluminum                                                                                                                                                               | 200-4000 μg/L |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Antimony                                                                                                                                                               | 90-900 μg/L   |
| Arsenic                                                                                                                                                                | 90-900 μg/L   |
| Barium                                                                                                                                                                 | 100-2500 μg/L |
| Beryllium                                                                                                                                                              | 50-500 μg/L   |
| Boron                                                                                                                                                                  | 800-2000 μg/L |
| Cadmium                                                                                                                                                                | 100-1000 μg/L |
| Chromium                                                                                                                                                               | 100-1000 μg/L |
| Cobalt                                                                                                                                                                 | 100-1000 μg/L |
| Copper                                                                                                                                                                 | 100-1000 μg/L |
| lron                                                                                                                                                                   | 200-4000 μg/L |
| Lead                                                                                                                                                                   | 100-1500 μg/L |
| Manganese                                                                                                                                                              | 200-2000 μg/L |
| Molybdenum                                                                                                                                                             | 60-600 μg/L   |
| Nickel                                                                                                                                                                 | 200-2000 μg/L |
| Selenium                                                                                                                                                               | 100-1000 μg/L |
| Silver                                                                                                                                                                 | 100-1000 μg/L |
| Strontium                                                                                                                                                              | 50-500 μg/L   |
| Aluminum Antimony Arsenic Barium Beryllium Boron Cadmium Chromium Cobalt Copper Iron Lead Manganese Molybdenum Nickel Selenium Silver Strontium Thallium Vanadium Zinc | 80-800 μg/L   |
| Vanadium                                                                                                                                                               | 50-2000 μg/L  |
| Zinc                                                                                                                                                                   | 300-2000 μg/L |

#### **Tin and Titanium**

CRM PT QR
Cat. #517 Cat. #573 M Cat. #517QR

One 15 mL screw-cap vial yields up to 1 liter after dilution. Use with AA, ICP-OES or ICP-MS methods.

| Tin200-200 | 00 μg/L |
|------------|---------|
| Titanium   | 00 ua/L |

#### Mercury

CRM PT QR Cat. #514 Cat. #574 M

One 15 mL screw-cap vial yields up to 1 liter after dilution. Analyze for total mercury.

Total mercury......3-30 μg/

#### Uranium

CRM PT QR Cat. #4402 Cat. #4400

One 15 mL screw-cap vial yields up to 1 liter after dilution.

Uranium.....25-200 μg/L

#### **Low-Level Mercury**

CRM PT QR Cat. #931QR

One 5 mL flame-sealed ampule yields up to 4 liters after dilution. Use with EPA1631, or other sensitive mercury analysis methods.

Total mercury.....20-100 ng/L

Waters ERA Low-Level Mercury is also available during February and March WP PT schemes.

#### Lithium

CRM PT QR
Cat. #4992 Cat. #4990 Cat. #4992QR

One 15 mL screw-cap vial yields up to 1 liter after dilution. Designed for the Ohio VAP program

Lithium......50-500 ug/L

\* Waters ERA WP Lithium PTs open in February and August.

#### **Physical Property**

#### Color CRM **OR** Cat. #882 Cat. #070 Cat. #070QR

One 125 mL whole-volume bottle is ready to analyze. Use with EPA Methods 110.1, 110.2, and 110.3, Standard Methods 2120B, 2120C, 2120E, or other applicable method.

Color......10-75 PC units

#### **Turbidity CRM** QR M Cat. #777 Cat. #893 Cat. #777QR

One 15 mL screw-cap vial yields up to 1 liter after dilution. Use with nephelometric methods.

Turbidity.....2-30 NTU

#### Miscellaneous Chemistry

#### **NEW** ANALYTE Cyanide CRM Cat. #588 Cat. #502QR Cat. #502 One 15 mL screw-cap vial yields up to 2 liters after dilution. Total cyanide.....

| Dissolved Oxyg                                      | en                     |   |                          |
|-----------------------------------------------------|------------------------|---|--------------------------|
| CRM<br>Cat. #213                                    | <b>PT</b><br>Cat. #212 | Q | <b>QR</b><br>Cat. #213QR |
| One 500 mL whole-volume bottle is ready to analyze. |                        |   |                          |
| Dissolved oxygen                                    |                        |   | 1-20 mg/l                |

#### Total Organic Halides (TOX) **CRM** QR Cat. #895 Cat. #670QR Cat. #670

One 2 mL flame-sealed ampule yields up to 2 liters after dilution. Analyze for total organic halides with adsorption pyrolysis titrimetric methods.

TOX..... .....300-1500 ua/L

| <b>Total Phenolics</b>                                                                        | (4-AAP)                |   |                          |
|-----------------------------------------------------------------------------------------------|------------------------|---|--------------------------|
| CRM<br>Cat. #515                                                                              | <b>PT</b><br>Cat. #589 | M | <b>QR</b><br>Cat. #515QR |
| One 2 mL flame-sealed ampule yields up to 2 liters after dilution. Analyze for total phenolic |                        |   |                          |

compounds by 4-AAP methods.

Total phenolics by 4-AAP......0.5-5 mg/L

#### **Perchlorate**

**CRM** PT **OR** Cat. #1501 Cat. #1500 Cat. #1501QR

One 15 mL screw-cap vial yields up to 2 liters after dilution. Use with EPA methods 314.0, 314.2, 331.0, 332.0, or other applicable methods. LCMS and IC compatible.

#### Silica

**CRM** QR Cat. #890 Cat. #775QR Cat. #775

One 60 mL poly bottle yields up to 1 liter after dilution. Analyze for silica as  $SiO_2$  with colorimetric or ICP methods.

Silica as SiO2.....

#### Sulfide

Cat. #071 Cat. #891 Cat. #071QR

One 10 mL flame-sealed ampule yields up to 1 liter after dilution. Preserved sample is guaranteed stable. Analyze for sulfide by titrimetric or colorimetric methods or ISE.

#### **Sulfite**

**CRM** QR Cat. #534QR Cat. #534

One 10 mL concentrate yields up to 2 liters after dilution.

.....10-250 mg/L

B Waters ERA WP Sulfite PTs open in January and July.

#### Surfactants-MBAS

**CRM** QR Cat. #892 Cat. #776

One 15 mL screw-cap vial yields up to 2 liters after dilution. Analyze for surfactants-MBAS with EPA Method 425.1, or other applicable method.

Surfactants-MBAS.....

#### Acidity

CRM PT **OR** Q Cat. #915 Cat. #885 Cat. #915QR

One 250 mL whole-volume bottle is ready to analyze. Designed for use with titrimetric methods to a pH endpoint of 8.3 S.U.

Acidity as CaCO3 .....

CRM - Certified Reference Material

PT - Proficiency Testing

QR - QuiK Response

All Waters ERA WP PTs open monthly (M), quarterly (Q), or biannually (B) unless otherwise noted. \* WP Lithium PTs open in February and August. Quarterly months are January, April, July, and October. Biannual months are January and July.

#### Miscellaneous Chemistry (continued) Volatiles

#### pН **CRM** QR Cat. #977 Cat. #577 Cat. #977QR

One 250 mL whole-volume bottle is ready to analyze.

.....5-10 units

#### **Boron**

**CRM** Q Cat. #919 Cat. #886 Cat. #919QR

One unpreserved 60 mL poly bottle yields in excess of 2 liters after dilution. Designed for

#### **Bromide**

**CRM** QR Q Cat. #769 Cat. #887 Cat. #769QR

One 15 mL screw-cap vial yields up to 2 liters after dilution. Use with ion chromatography or colorimetric methods.

#### Total Residual Chlorine (TRC)

**CRM** QR Cat. #501 Cat. #587 Cat. #501QR

One 2 mL flame-sealed ampule yields up to 2 liters after dilution. Use with titrimetric or

Total residual chlorine..... 

#### Low-Level Total Residual Chlorine (TRC)

**CRM OR** Cat. #881 Cat. #917QR Cat. #917

Designed for testing at low µg/L levels. One 2 mL flame-sealed ampule yields up to 2 liters after dilution. Use with sensitive titrimetric or colorimetric methods.

Total residual chlorine.....





#### Volatiles

**CRM** PT **OR** Cat. #710 Cat. #830 Cat. #710QR

One 2 mL flame-sealed ampule yields in excess of 200 mL after dilution. Use with EPA Methods 601, 602, 8021, 624, 8260, or other applicable method. Contains a subset of the analytes listed below at 5-300 µg/L.

1,2-Dibromo-3-chloropropane Methyl tert-butyl ether (MTBE) Acetonitrile (DBCP) 4-Methyl-2-pentanone (MIBK) Acrolein 1,2-Dibromoethane (EDB) Methylene chloride Acrylonitrile Dibromomethane Naphthalene **Benzene** 1,2-Dichlorobenzene Nitrobenzene Bromobenzene 1,3-Dichlorobenzene n-Propylbenzene Bromochloromethane 1,4-Dichlorobenzene Styrene Bromodichloromethane Dichlorodifluoromethane 1,1,1,2-Tetrachloroethane Bromoform 1,1-Dichloroethane 1,1,2,2-Tetrachloroethane Bromomethane 1,2-Dichloroethane Tetrachloroethene 2-Butanone (MEK) cis-1.2-Dichloroethene Toluene n-Butylbenzene 1,1-Dichloroethene 1,2,3-Trichlorobenzene sec-Butylbenzene trans-1.2-Dichloroethene 1.2.4-Trichlorobenzene tert-Butylbenzene 1,3-Dichloropropane 1,1,1-Trichloroethane Carbon disulfide 1,2-Dichloropropane 1,1,2-Trichloroethane Carbon tetrachloride 2,2-Dichloropropane Trichloroethene Chlorobenzene cis-1,3-Dichloropropene Trichlorofluoromethane Chlorodibromomethane 1,1-Dichloropropene 1,2,3-Trichloropropane Chloroethane trans-1,3-Dichloropropene 1,2,4-Trimethylbenzene 2-Chloroethyl vinyl ether 1,3,5-Trimethylbenzene Ethylbenzene Chloroform Hexachlorobutadiene Vinyl acetate Chloromethane Hexachloroethane Vinyl chloride 2-Chlorotoluene 2-Hexanone m&p Xylene 4-Chlorotoluene Isopropylbenzene o-Xylene p-Isopropyltoluene Xylenes, total

#### 1,4-Dioxane

NEW PRODUC

**CRM** Cat. #402 Cat. #597

**OR** Cat. #402QR

One 2 mL flame-sealed ampule yields up to 1 liter after dilution. Use with modified versions of EPA methods 8260, 8270, 1624, or other applicable methods.

1,4-Dioxane....

#### Volatile Aromatics

**CRM** PT OR Q Cat. #4452 Cat. #4450 Cat. #4452QR

One 2 mL flame-sealed ampule yields in excess of 200 mL after dilution. Use with EPA Methods 602, 8021, or other applicable method. Each standard contains all listed analytes at 10-300  $\mu$ g/L after dilution.

Benzene Ethylbenzene 1,3,5-Trimethylbenzene Chlorobenzene Naphthalene m&p Xylene 1.2-Dichlorobenzene Toluene o-Xylene 1.3-Dichlorobenzene 1,2,4-Trichlorobenzene Xylenes, total 1.2.4-Trimethylbenzene 1.4-Dichlorobenzene

#### BTEX & MTBE in Water

**CRM** QR Cat. #760 Cat. #643 Cat. #760QR

One 2 mL flame-sealed ampule yields in excess of 200 mL after dilution. Use with EPA Methods 602, 8021, or other applicable method. Includes all BTEX compounds and MTBE at 10-300  $\mu$ g/L after dilution.

#### Volatiles (continued)

#### Gasoline Range Organics (GRO) in Water

CRM PT QR Cat. #762 Cat. #640 Q Cat. #762QR

One 2 mL flame-sealed ampule yields up to 2 liters after dilution. Use with both purge and trap and modified EPA 8015 GC/FID methods or other applicable methods to test for GRO at  $400-4000~\mu g/L$ . Also use to test for BTEX in gasoline.

Note: This standard is not compliant with the NELAC concentration ranges for the BTEX analytes. If you require a NELAC-compliant sample for these analytes, use WP Volatiles catalog #830 or BTEX in Water catalog #643.

#### **PCBs**

#### **PCBs in Water**

 CRM
 PT
 QR

 Cat. #734S
 Cat. #832S
 M
 Cat. #734SQR

One 2 mL flame-sealed ampule yields up to 2 liters after dilution. Use with EPA Methods 608, 8082, or other applicable method. Contains a different aroclor randomly selected from the list below at 2–10  $\mu$ g/L.

 Aroclor 1016
 Aroclor 1242
 Aroclor 1254

 Aroclor 1221
 Aroclor 1248
 Aroclor 1260

 Aroclor 1232

#### **PCBs in Water Standards**

PCBs in water standards are sold individually in 2 mL flame-sealed ampules that yield 1 liter after dilution. Use with EPA Methods 608, 8082, or other applicable methods. Each standard contains an Aroclor at 1–15  $\mu$ g/L after dilution.

| CRM Cat. # | Aroclor | Range     |
|------------|---------|-----------|
| 860        | 1016    | 1-15 µg/L |
| 861        | 1221    | 1-15 µg/L |
| 862        | 1232    | 1-15 μg/L |
| 863        | 1242    | 1-15 µg/L |
| 864        | 1248    | 1-15 µg/L |
| 865        | 1254    | 1-15 μg/L |
| 866        | 1260    | 1-15 μg/L |

#### **PCBs in Oil**

 CRM
 PT
 QR

 Cat. #729S
 Cat. #835S
 M
 Cat. #729SQR

One 10 mL flame-sealed ampule is ready to analyze. Use with EPA Method 8082, or other applicable method. Contains a different arcclor randomly selected from the list below at  $10-50\ mg/kg$ .

 Aroclor 1016
 Aroclor 1242
 Aroclor 1254

 Aroclor 1221
 Aroclor 1248
 Aroclor 1260

 Aroclor 1232

## Per-and Polyfluoroalkyl Substances (PFAS)

| PFAS - Non-Po | table Wate | er | NEW<br>PRODUCT |
|---------------|------------|----|----------------|
| CRM           | <b>PT</b>  | В  | <b>QR</b>      |
| Cat. #403     | Cat. #598  |    | Cat. #403QR    |

One 2 mL flame sealed ampule yields in excess of 1.5 liters after dilution. Design is suitable for methods analyzing non-potable water. Use with LC-MS/MS techniques. The diluted standard will contain a minimum of 17 analytes in each lot selected from the list below.

| iot concetta ir ann tire net zonetii                            |                 |
|-----------------------------------------------------------------|-----------------|
| 11-chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11Cl-PF3OL |                 |
| 9-chlorohexadecafluoro-3-oxanonane-1-sulfonic acid (9CI-PF3OI   | NS)100-500 ng/L |
| 4,8-dioxa-3H-perfluorononanoic acid (DONA)                      |                 |
| N-ethyl perfluorooctanesulfonamidoacetic acid (NEtFOSAA)        |                 |
| 1H, 1H, 2H, 2H-Perfluorodecanesulfonic acid (8:2 FTS)           | 100-500 ng/L    |
| 1H, 1H, 2H, 2H-Perfluorohexanesulfonic acid (4:2 FTS)           | 100-500 ng/L    |
| 1H, 1H, 2H, 2H-Perfluorooctanesulfonic acid (6:2 FTS)           | 100-500 ng/L    |
| Hexafluoropropylene oxide dimer acid (HFPO-DA)                  | 100-500 ng/L    |
| N-methyl perfluorooctanesulfonamidoacetic acid (NMeFOSAA)       | 100-500 ng/L    |
| Perfluorobutanesulfonic acid (PFBS)                             | 100-500 ng/L    |
| Perfluorobutanoic acid (PFBA)                                   | 100-500 ng/L    |
| Perfluorodecane sulfonic acid (PFDS)                            | 100-500 ng/L    |
| Perfluorodecanoic acid (PFDA)                                   | 100-500 ng/L    |
| Perfluorododecanoic acid (PFDoA)                                |                 |
| Perfluoroheptane sulfonic acid (PFHpS)                          | 100-500 ng/L    |
| Perfluoroheptanoic acid (PFHpA)                                 | 100-500 ng/L    |
| Perfluorohexanesulfonic acid (PFHxS)                            |                 |
| Perfluorohexanoic acid (PFHxA)                                  |                 |
| Perfluorononane sulfonic acid (PFNS)                            | 100-500 ng/L    |
| Perfluorononanoic acid (PFNA)                                   | 100-500 ng/L    |
| Perfluorooctane sulfonamide (PFOSAm)                            |                 |
| Perfluorooctanesulfonic acid (PFOS)                             | 100-500 ng/L    |
| Perfluorooctanoic acid (PFOA)                                   | 100-500 ng/L    |
| Perfluoropentanoic acid (PFPeA)                                 |                 |
| Perfluoropentane sulfonic acid (PFPeS)                          | 100-500 ng/L    |
| Perfluorotetradecanoic acid (PFTDA)                             |                 |
| Perfluorotridecanoic acid (PFTrDA)                              | 100-500 ng/L    |
| Perfluoroundecanoic acid (PFUnDA)                               | 100-500 ng/L    |
|                                                                 |                 |

#### Herbicides

#### **Chlorinated Acid Herbicides**

CRM PT QR
Cat. #718 Cat. #829 M Cat. #718QR

One 2 mL flame-sealed ampule yields up to 2 liters after dilution. Use with EPA Methods 615, 8151, or other applicable methods. Contains a subset of the analytes listed below at 2–10  $\mu$ g/L (except MCPA and MCPP at 10–100  $\mu$ g/L).

Note: 4-nitrophenol and pentachlorophenol are not within the EPA/NELAC range. Use the Acids standard (page 16) for these compounds in the EPA/NELAC range.

Acifluorfen Dalapon MCPP Bentazon Dicamba 4-Nitrophenol Chloramben 3,5-Dichlorobenzoic acid Pentachlorophenol Dichlorprop 2.4-D Picloram 2,4-DB 2,4,5-T Dinoseb 2,4,5-TP (Silvex) Dacthal diacid (DCPA) MCPA

CRM - Certified Reference Material PT - Proficiency Testing QR - QuiK Response

All Waters ERA WP PTs open monthly (M), quarterly (Q), or biannually (B) unless otherwise noted. WP Lithium PTs open in February and August. Quarterly months are January, April, July, and October. Biannual months are January and July.

#### Semivolatiles

#### Base/Neutrals



**CRM** Cat. #711

Cat. #833

**OR** Cat. #711QR

One 2 mL flame-sealed ampule yields up to 2 liters after dilution. Use with EPA Methods 625, 8270, or other applicable method. Contains a subset of the analytes listed below at 10-225 µg/L (except Benzidine at 200-1000 µg/L).

Acenaphthene bis(2-Chloroethyl)ether Acenaphthylene 1-Chloronaphthalene Acetophenone 2-Chloronaphthalene 2-Amino-1-methylbenzene 4-Chlorophenyl phenyl ether (o-Toluidine) Chrysene Aniline n-Decane Anthracene Dibenz(a,h) anthracene Dibenzofuran Atrazine Azobenzene 2,3-Dichloroaniline 1.2-Dichlorobenzene Benzaldehvde Benzidine 1.3-Dichlorobenzene 1,4-Dichlorobenzene Benzo(a)anthracene Benzo(b)fluoranthene 3.3-Dichlorobenzidine Benzo(k)fluoranthene Diethyl phthalate Benzo(g,h,i)perylene Dimethyl phthalate Benzo(a)pyrene Di-n-butyl phthalate Benzyl alcohol 1.3-Dinitrobenzene 1,1-Biphenyl 2.4-Dinitrotoluene 4-Bromophenyl phenyl ether 2.6-Dinitrotoluene Butyl benzyl phthalate 1,2-Diphenylhydrazine Caprolactam Di-n-octvl phthalate Carbazole bis(2-Ethylhexyl)phthalate 4-Chloroaniline Fluoranthene bis(2-Chloroethoxy)methane Fluorene

Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene Hexachloroethane Indeno(1,2,3-cd)pyrene Isophorone 2-Methylnaphthalene

Naphthalene

2-Nitroaniline 3-Nitroaniline 4-Nitroaniline Nitrobenzene N-Nitrosodiethylamine N-Nitrosodimethylamine N-Nitroso-di-n-propylamine N-Nitrosodiphenylamine n-Octadecane 2,2'-Oxybis(1-Chloropropane) Pentachlorobenzene Phenanthrene Pvrene Pyridine 1,2,4,5-Tetrachlorobenzene 1.2.4-Trichlorobenzene

#### **Acids**

**CRM** Cat. #712

PT Cat. #834 M

OR Cat. #712QR

One 2 mL flame-sealed ampule yields up to 2 liters after dilution. Use with EPA Methods 604, 625, 8041, 8270, or other applicable method. Contains a subset of the analytes listed below at 30-200  $\mu$ g/L.

Benzoic acid 4-Chloro-3-methylphenol 2-Chlorophenol 2,4-Dichlorophenol 2.6-Dichlorophenol

2,4-Dimethylphenol

2,4-Dinitrophenol 2-Methyl-4,6-dinitrophenol 2-Methylphenol 3 & 4-Methlyphenol

2-Nitrophenol 4-Nitrophenol Pentachlorophenol Phenol

2.3.4.6-Tetrachlorophenol 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol

#### Diesel Range Organics (DRO) in Water

**CRM** Cat. #764

PT Cat. #641 |Q|

QR Cat. #764QR

One 2 mL flame-sealed ampule yields up to 2 liters after dilution. Use with modified EPA 8015 GC/FID methods, or other applicable method. Includes #2 Diesel at 800-6000 µg/L.

#### EDB/DBCP/TCP

**CRM** Cat. #692

PT Cat. #562 Q

QR Cat. #692QR

One 2 mL flame-sealed ampule yields in excess of 200 mL after dilution. Use with EPA Method 8011, or other applicable method. Each lot contains all analytes at 0.2-2.0 ua/L.

1,2-Dibromo-3-chloropropane (DBCP)

1,2-Dibromoethane (EDB)

#### Glycols in Water

**CRM** Cat. #401

PT Cat. #271

**OR** Cat. #401QR

One 2 mL flame-sealed ampule yields up to 2 liters after dilution. Use with EPA Methods 8015B, 8430, 1671, or other applicable method. Each lot contains all analytes in the concentration range 75-200 mg/L.

Diethylene glycol Ethylene glycol

Propylene alycol Tetraethylene glycol Triethylene glycol

#### **Low-Level Nitroaromatics & Nitramines**

CRM Cat. #677 Cat. #932

Q

QR Cat. #677QR

One 2 mL flame-sealed ampule yields up to 2 liters of sample after dilution. Use with EPA Methods 8330, 8091, or other applicable method for explosive and explosive residue analytes. Contains at least 80% of the analytes, randomly selected from the list below at 1-20 µg/L.

4-Amino-2,6-dinitrotoluene 2-Amino-4.6-dinitrotoluene

HMX Nitrobenzene RDX Tetrvl

2-Nitrotoluene 3-Nitrotoluene 2.4-Dinitrotoluene 2.6-Dinitrotoluene 4-Nitrotoluene

1.3.5-Trinitrobenzene 2.4.6-Trinitrotoluene

#### Low-Level PAHs

CRM Cat. #715

Cat. #836

Q

QR Cat. #715QR

One 2 mL flame-sealed ampule yields up to 2 liters after dilution. Use with EPA HPLC Methods 610, 8310, or other applicable method, and GC/MS Method 8270 SIM. Contains a subset of the analytes listed below at  $0.5-20~\mu g/L$ .

Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene

Benzo(k)fluoranthene

Benzo(g,h,i)perylene Benzo(a)pyrene Chrysene Dibenz(a,h)anthracene Fluoranthene

Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene

#### PAHs - GC/GCMS

**CRM** Cat. #4882

PT Cat. #4880 0

QR Cat. #4882QR

One 2mL flame-sealed ampule yields up to 2 liters after dilution. Use with EPA Methods 625, 8100, 8270, or other applicable method. Each standard contains a subset of the analytes listed below at 10-200  $\mu$ g/L.

Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene

Benzo(b)fluoranthene

Benzo(k)fluoranthene Benzo(g,h,i)perylene Chrysene Dibenz(a,h)anthracene

Fluoranthene

Fluorene

Indeno(1,2,3-cd)pyrene 1-Methylnaphthalene 2-Methylnaphthalene Naphthalene Phenanthrene Pvrene

#### **Pesticides**

#### **Organochlorine Pesticides**

CRM PT QR Cat. #713 Cat. #831 M

One 2 mL flame-sealed ampule yields up to 2 liters after dilution. Use with EPA Methods 608, 8081, or other applicable method. Contains a subset of the analytes listed below at 1–20  $\mu$ g/L.

Aldrin 4.4'-DDD Endrin alpha-BHC 4.4'-DDE Endrin aldehyde beta-BHC 4,4'-DDT Endrin ketone delta-BHC Dieldrin Heptachlor gamma-BHC (Lindane) Endosulfan I Heptachlor epoxide (beta) alpha-Chlordane Endosulfan II Methoxychlor

gamma-Chlordane Endosulfan sulfate

#### Nitrogen Pesticides

CRM Cat. #674

Cat. #487

Q

QR Cat. #674QR

One 2 mL flame-sealed ampule yields up to 2 liters after dilution. Use with EPA Methods 619, 633, 8141, 8270, or other applicable method. Contains a subset of the analytes listed below at 2–20  $\mu$ g/L.

| Alachlor  | Deethyl atrazine     | Prometon    |
|-----------|----------------------|-------------|
| Ametryn   | Deisopropyl atrazine | Prometryn   |
| Anilazine | Diaminoatrazine      | Pronamide   |
| Atraton   | EPTC (eptam)         | Propachlor  |
| Atrazine  | Hexazinone           | Propazine   |
| Bromacil  | Metolachlor          | Simazine    |
| Butachlor | Metribuzin           | Terbacil    |
| Butylate  | Napropamide          | Trifluralin |
| Cyanazine |                      |             |

#### Chlordane

 CRM
 PT
 QR

 Cat. #716
 Cat. #837
 M
 Cat. #716QR

One 2 mL flame-sealed ampule yields up to 2 liters of sample after dilution. Use with EPA Methods 608, 8081, or other applicable method. Contains technical chlordane at  $3-25 \, \mu g/L$ .

#### Toxaphene

 CRM
 PT
 QR

 Cat. #717
 Cat. #838
 M
 Cat. #717QR

One 2 mL flame-sealed ampule yields up to 2 liters of sample after dilution. Use with EPA Methods 608, 8081, or other applicable method. Contains toxaphene at 20– $100 \mu g/L$ .

#### **Organophosphorus Pesticides (OPP)**

CRM Cat. #665

P1 Cat. #934 Q

QR Cat. #665QR

One 2 mL flame-sealed ampule yields up to 2 liters after dilution. Use with EPA methods 614, 622, 8141, or other applicable method. Contains a subset of the analytes listed below at 2–20  $\mu$ g/L.

Azinphos-methyl (guthion) Dioxathion Malathion Methyl parathion Carbophenothion Disulfoton Chlorpyrifos Phorate Ethion Phosmet Demeton Ethoprop Demeton O & S Ethyl Parathion (parathion) Ronnel Diazinon Famphur Stirophos (tetrachlorovinphos) Dichlorvos (DDVP) Fonofos Terbufos

#### Carbamate Pesticides

CRM PT QR
Cat. #908 Cat. #899 Cat. #908QR

One 2 mL flame-sealed ampule yields up to 2 liters after dilution. Use with EPA method 632, or other applicable method. Contains a subset of the analytes listed below at 5–200  $\mu$ g/L.

Aldicarb Carbaryl Methiocarb
Aldicarb sulfone Carbofuran Methomyl
Aldicarb sulfoxide Diuron Oxamyl
Baygon 3-Hydroxycarbofuran Propham

CRM - Certified Reference Material

PT - Proficiency Testing

QR - QuiK Response

Dimethoate

All Waters ERA WP PTs open monthly (M) or quarterly (Q) unless otherwise noted. Quarterly months are January, April, July, and October.

#### Audrey Cornell Principal Proficiency Testing Technical Specialist



#### Ready-to-Use CRMs

The following whole-volume standards are ready-to-use as provided and require no dilution before analysis.\*

#### **Minerals**

#### CRM Cat. #506

One 500 mL whole-volume bottle is ready to analyze.

| 25-400 mg/L       |
|-------------------|
| 35-275 mg/L       |
| 0.4-4 mg/L        |
| 4-40 mg/L         |
| 10-100 mg/L       |
| 200-1200 µmhos/cm |
| 5-125 mg/L        |
| 140-800 mg/L      |
| 140-800 mg/L      |
|                   |

#### **Hardness**

#### CRM

Cat. #507

One 500 mL whole-volume bottle is ready to analyze.

| Calcium                               | 10-100 mg/L |
|---------------------------------------|-------------|
| Calcium hardness as CaCO <sub>3</sub> | 25-250 mg/L |
| Total hardness as CaCO <sub>3</sub>   | 40-415 mg/L |
| Magnesium                             | 4-40 mg/L   |
| Total suspended solids (TSS)          | 20-100 mg/L |

#### pН

#### CRM

Cat. #977

One 250 mL whole-volume bottle is ready to analyze.

pH......5-10 units

#### Oil & Grease

#### CRM

Cat. #504

One 250 mL whole-volume bottle is ready to analyze. Use with EPA hexane extraction Method 1664, or other applicable method. Certified values are provided for IR and gravimetric methods. For additional Oil & Grease CRMs see page 11.

Oil and grease.....20-200 mg/bottle

#### **Solids**

#### CRM

Cat. #499

One 500 mL whole-volume bottle is ready to analyze.

| Total solids at 105 °C           | 140-800 mg/L |
|----------------------------------|--------------|
| Total dissolved solids at 180 °C | 140-800 mg/L |
| Total suspended solids (TSS)     | 20-100 mg/L  |
| pHHq                             | 5-10 units   |

#### **Trace Metals\***

#### CRM

Cat. #740

One 500 mL whole-volume bottle is ready to analyze. Use with AA, ICP-OES, ICP-MS, and selected colorimetric methods.

| Aluminum       200-4000 μg/L         Antimony       90-900 μg/L         Arsenic       90-900 μg/L         Barium       100-2500 μg/L         Beryllium       50-500 μg/L         Boron       800-2000 μg/L         Cadmium       100-1000 μg/L         Chromium       100-1000 μg/L         Cobalt       100-1000 μg/L         Iron       200-4000 μg/L         Lead       100-1500 μg/L         Manganese       200-2000 μg/L         Nickel       200-2000 μg/L         Nickel       200-2000 μg/L         Silver       100-1000 μg/L         Strontium       50-500 μg/L         Thallium       80-800 μg/L         Vanadium       50-2000 μg/L         Zinc       300-2000 μg/L | Aluminum   | 200-4000 μg/L |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------|
| Arsenic       90-900 μg/L         Barium       100-2500 μg/L         Beryllium       50-500 μg/L         Boron       800-2000 μg/L         Cadmium       100-1000 μg/L         Chromium       100-1000 μg/L         Cobalt       100-1000 μg/L         Iron       200-4000 μg/L         Lead       100-1500 μg/L         Manganese       200-2000 μg/L         Molybdenum       60-600 μg/L         Nickel       200-2000 μg/L         Selenium       100-1000 μg/L         Silver       100-1000 μg/L         Strontium       50-500 μg/L         Thallium       80-800 μg/L         Vanadium       50-2000 μg/L         Zinc       300-2000 μg/L                                  | Antimony   | 90-900 μg/L   |
| Barium       100-2500 μg/L         Beryllium       50-500 μg/L         Boron       800-2000 μg/L         Cadmium       100-1000 μg/L         Chromium       100-1000 μg/L         Cobalt       100-1000 μg/L         Copper       100-1000 μg/L         Iron       200-4000 μg/L         Manganese       200-2000 μg/L         Molybdenum       60-600 μg/L         Nickel       200-2000 μg/L         Selenium       100-1000 μg/L         Silver       100-1000 μg/L         Strontium       50-500 μg/L         Thallium       80-800 μg/L         Vanadium       50-2000 μg/L         Zinc       300-2000 μg/L                                                                  | Arsenic    | 90-900 μg/L   |
| Beryllium       50-500 μg/L         Boron       800-2000 μg/L         Cadmium       100-1000 μg/L         Chromium       100-1000 μg/L         Cobalt       100-1000 μg/L         Copper       100-1000 μg/L         Iron       200-4000 μg/L         Manganese       200-2000 μg/L         Molybdenum       60-600 μg/L         Nickel       200-2000 μg/L         Selenium       100-1000 μg/L         Silver       100-1000 μg/L         Strontium       50-500 μg/L         Thallium       80-800 μg/L         Vanadium       50-2000 μg/L         Zinc       300-2000 μg/L                                                                                                     | Barium     | 100-2500 μg/L |
| Boron       800-2000 μg/L         Cadmium       100-1000 μg/L         Chromium       100-1000 μg/L         Cobalt       100-1000 μg/L         Copper       100-1000 μg/L         Iron       200-4000 μg/L         Lead       100-1500 μg/L         Manganese       200-2000 μg/L         Nickel       200-2000 μg/L         Selenium       100-1000 μg/L         Silver       100-1000 μg/L         Strontium       50-500 μg/L         Thallium       80-800 μg/L         Vanadium       50-2000 μg/L         Zinc       300-2000 μg/L                                                                                                                                             | Beryllium  | 50-500 μg/L   |
| Cadmium       100-1000 μg/L         Chromium       100-1000 μg/L         Cobalt       100-1000 μg/L         Copper       100-1000 μg/L         Iron       200-4000 μg/L         Lead       100-1500 μg/L         Manganese       200-2000 μg/L         Nickel       200-2000 μg/L         Selenium       100-1000 μg/L         Silver       100-1000 μg/L         Strontium       50-500 μg/L         Thallium       80-800 μg/L         Vanadium       50-2000 μg/L         Zinc       300-2000 μg/L                                                                                                                                                                               | Boron      | 800-2000 μg/L |
| Chromium       100-1000 μg/L         Cobalt       100-1000 μg/L         Copper       100-1000 μg/L         Iron       200-4000 μg/L         Lead       100-1500 μg/L         Manganese       200-2000 μg/L         Nickel       200-2000 μg/L         Nickel       200-2000 μg/L         Selenium       100-1000 μg/L         Silver       100-1000 μg/L         Strontium       50-500 μg/L         Thallium       80-800 μg/L         Vanadium       50-2000 μg/L         Zinc       300-2000 μg/L                                                                                                                                                                                | Cadmium    | 100-1000 μg/L |
| Cobalt       100-1000 μg/L         Copper       100-1000 μg/L         Iron       200-4000 μg/L         Lead       100-1500 μg/L         Manganese       200-2000 μg/L         Nickel       200-2000 μg/L         Selenium       100-1000 μg/L         Silver       100-1000 μg/L         Strontium       50-500 μg/L         Thallium       80-800 μg/L         Vanadium       50-2000 μg/L         Zinc       300-2000 μg/L                                                                                                                                                                                                                                                        | Chromium   | 100-1000 μg/L |
| Copper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Cobalt     | 100-1000 μg/L |
| Iron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Copper     | 100-1000 μg/L |
| Lead       100-1500 μg/L         Manganese       200-2000 μg/L         Molybdenum       60-600 μg/L         Nickel       200-2000 μg/L         Selenium       100-1000 μg/L         Silver       100-1000 μg/L         Strontium       50-500 μg/L         Thallium       80-800 μg/L         Vanadium       50-2000 μg/L         Zinc       300-2000 μg/L                                                                                                                                                                                                                                                                                                                          | Iron       | 200-4000 μg/L |
| Manganese       200-2000 μg/L         Molybdenum       60-600 μg/L         Nickel       200-2000 μg/L         Selenium       100-1000 μg/L         Silver       100-1000 μg/L         Strontium       50-500 μg/L         Thallium       80-800 μg/L         Vanadium       50-2000 μg/L         Zinc       300-2000 μg/L                                                                                                                                                                                                                                                                                                                                                           | Lead       | 100-1500 μg/L |
| Molybdenum   60-600 μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Manganese  | 200-2000 μg/L |
| Nickel       200-2000 μg/L         Selenium       100-1000 μg/L         Silver       100-1000 μg/L         Strontium       50-500 μg/L         Thallium       80-800 μg/L         Vanadium       50-2000 μg/L         Zinc       300-2000 μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                      | Molybdenum | 60-600 μg/L   |
| Selenium       100-1000 μg/L         Silver       100-1000 μg/L         Strontium       50-500 μg/L         Thallium       80-800 μg/L         Vanadium       50-2000 μg/L         Zinc       300-2000 μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Nickel     | 200-2000 μg/L |
| Silver       100-1000 μg/L         Strontium       50-500 μg/L         Thallium       80-800 μg/L         Vanadium       50-2000 μg/L         Zinc       300-2000 μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Selenium   | 100-1000 μg/L |
| Strontium       50-500 μg/L         Thallium       80-800 μg/L         Vanadium       50-2000 μg/L         Zinc       300-2000 μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Silver     | 100-1000 μg/L |
| Thallium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Strontium  | 50-500 μg/L   |
| Vanadium50-2000 μg/L<br>Zinc300-2000 μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Thallium   | 80-800 μg/L   |
| $Zinc \underline{\hspace{1cm}} 3002000~\mu\text{g/L}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Vanadium   | 50-2000 μg/L  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Zinc       | 300-2000 μg/L |

#### Demand\*

#### CRM

Cat. #743

One 500 mL whole-volume bottle is ready to analyze.

| 5-day BOD        | 18-230 mg/L |
|------------------|-------------|
| Carbonaceous BOD | 18-230 mg/L |
| COD              | 30-250 mg/L |
| TOC              | 6-100 mg/L  |

#### Simple Nutrients\*

#### CRM

Cat. #739

One 500 mL whole-volume bottle is ready to analyze.

| Ammonia as N              | 1–20 mg/L    |
|---------------------------|--------------|
| Nitrate as N              | 2-25 mg/L    |
| Nitrate plus nitrite as N | 2.5-25 mg/L  |
| ortho-Phosphate as P      | 0.5-5.5 ma/L |

#### **Complex Nutrients\***

#### CRM

Cat. #741

One 500 mL whole-volume bottle is ready to analyze.

| Total Kjeldahl nitrogen as N | 3-35 mg/L   |
|------------------------------|-------------|
| Total phosphorus as P        | 0.5-10 ma/l |

<sup>\*</sup>These standards are guaranteed stable for a minimum of one month after receipt at your facility.

#### QC Plus

The QC Plus Program includes environmental analytes at concentrations that reflect realistic levels of pollutants in industrial settings. Each sample level is designed for wastewater and industrial analysis. These Certified Reference Materials (CRMs) are an asset to any quality assurance program because they enable you to test your internal systems to ensure that your equipment, methods, and analysts are producing quality data.

#### QC Plus - Demand

#### CRM

Cat. #4013

One 24 mL screw-cap vial yields up to 1 liter after dilution.

| 5-day BOD        | 100-300 mg/L  |
|------------------|---------------|
| Carbonaceous BOD | 87.0-256 mg/L |
| COD              | 150-500 mg/L  |
| TOC              | 50.0-200 mg/L |

#### QC Plus - Hexavalent Chromium

#### **CRM**

Cat. #4183

One 15 mL screw-cap vial yields up to 2 liters after dilution.

Hexavalent chromium......100-1000 µg/L

#### QC Plus - Minerals

#### CRM

Cat. #4053

Two 30 mL screw-cap vials to be diluted together to yield up to 2 liters of sample.

| Alkalinity as CaCO <sub>3</sub>       | 10.0-300 mg/L     |
|---------------------------------------|-------------------|
| Calcium                               | 5.00-150 mg/L     |
| Calcium hardness as CaCO <sub>3</sub> | 12.5-375 mg/L     |
| Chloride                              | 10.0-700 mg/L     |
| Conductivity                          | 100-4000 µmhos/cm |
| Magnesium                             | 1.00-50.0 mg/L    |
| Potassium                             |                   |
| Sodium                                |                   |
| Sulfate                               | 10.0-300 mg/L     |
| Total dissolved solids at 180 °C      | 20.0-2400 mg/L    |
| Total hardness as CaCO <sub>3</sub>   | 15.0-600 mg/L     |



#### **QC Plus - Nutrients**

#### **CRM**

Cat. #4023

Two 15 mL screw-cap vials yield up to 2 liters each after dilution.

| Ammonia nitrogen as N   | 0.250-10.0 mg/L  |
|-------------------------|------------------|
| Nitrate nitrogen as N   | 0.250-10.0 mg/L  |
| ortho-Phosphate as P    | 0.0500-10.0 mg/L |
| Total Kjeldahl nitrogen | 0.250-10.0 mg/L  |
| Total phosphorus as P   | 0.100-10.0 mg/L  |

#### QC Plus - Oil & Grease

#### **CRM**

Cat. #4123

One 24 mL screw-cap vial yields up to 2 liters after dilution.

il and grease......10.0-100 mg/L

#### QC Plus - pH

#### CRM

Cat. #4063

One 250 mL whole-volume bottle is ready to analyze.

pH......2.00-12.0 units

#### QC Plus - Fluoride

#### CRM

Cat. #4423

One 15 mL screw-cap vial yields up to 2 liters after dilution.

Fluoride.....5-20 mg/L

CRM - Certified Reference Material

PT - Proficiency Testing

QR - QuiK Response

RM - Reference Material

Quarterly months are January, April, July, and October. Biannual months are January and July.

#### QC Plus

#### QC Plus - Solids

#### **CRM** Cat. #4033

One 24 mL screw-cap vial with a powder yields 1 liter after dilution.

| Total dissolved solids at 180 °C | 500-2000 mg/L |
|----------------------------------|---------------|
| Total solids at 105 °C           | 600-2500 mg/L |
| Total suspended solids (TSS)     | 100-500 mg/L  |

#### QC Plus - Total Cyanide

#### **CRM** Cat. #4093

One 15 mL screw-cap vial yields up to 2 liters after dilution.

Total cyanide......1.00-5.00 mg/L

#### **QC Plus - Total Phenolics**

#### **CRM** Cat. #4083

One 15 mL screw-cap vial yields up to 2 liters after dilution.

#### **QC Plus - Total Residual Chlorine**

#### **CRM** Cat. #4103

One 24 mL amber screw cap vial yields up to 2 liters of solution after dilution.

Total residual chlorine......0.100-1.00 mg/L

Quarterly months are January, April, July, and October. Biannual months are January and July.



Claire Toon Proficiency Testing Technical Specialist

# TRUST THE DMR-QA EXPERTS

Whether you are new to the U.S. EPA's Discharge Monitoring Report-Quality Assurance (DMR-QA) study, or are a seasoned participant, Waters ERA offers readily-accessible tools and a team of professionals to help you:

- Report data easily with access to eDATA tools
- Receive WP study reports two days after close date
- Access NPDES data from eDATA at the close of study
- Meet study requirements and be successful with the DMR-QA journey



# WATER SUPPLY

Matrices with low concentrations of analytes for testing water supply, drinking water, or ground water. Standards are based on requirements of the United States Environmental Protection Agency Safe Drinking Water Act and may be used to satisfy PT requirements worldwide.



| Water Supply |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              | Scheme #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Opens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Closes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Q            | WS 306                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Jan 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Feb 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|              | WS 307                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Feb 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Mar 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|              | WS 308                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mar 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Apr 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Q            | WS 309                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Apr 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | May 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|              | WS 310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | May 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Jun 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|              | WS 311                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Jun 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Jul 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Q            | WS 312                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Jul 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Aug 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|              | WS 313                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Aug 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sep 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|              | WS 314                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Sep 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Oct 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Q            | WS 315                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Oct 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Nov 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|              | WS 316                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Nov 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Dec 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|              | WS 317                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Dec 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Jan 19, 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|              | THE RESERVE TO SERVE THE PARTY OF THE PARTY | A STATE OF THE REAL PROPERTY AND ADDRESS OF THE PROPERTY AND ADDRESS OF THE PROPERTY AND ADDRESS OF | ACCOMPANIES OF THE PROPERTY OF |

| Water Supply |          |        |              |
|--------------|----------|--------|--------------|
|              | Scheme # | Opens  | Closes       |
| Q            | WS 318   | Jan 9  | Feb 23       |
|              | WS 319   | Feb 6  | Mar 23       |
|              | WS 320   | Mar 6  | Apr 20       |
| Q            | WS 321   | Apr 10 | May 25       |
|              | WS 322   | May 8  | Jun 22       |
|              | WS 323   | Jun 5  | Jul 20       |
| Q            | WS 324   | Jul 10 | Aug 24       |
|              | WS 325   | Aug 7  | Sep 21       |
|              | WS 326   | Sep 5  | Oct 20       |
| Q            | WS 327   | Oct 6  | Nov 20       |
|              | WS 328   | Oct 31 | Dec 15       |
|              | WS 329   | Dec 4  | Jan 18, 2024 |

Schedule subject to change - see Waters ERA's website at eraqc.com

#### Contents

| Description                              | CRM  | PT     | QR     | Page |
|------------------------------------------|------|--------|--------|------|
| 1,4-Dioxane                              | 689  | 272 B  | 689QR  | 27   |
| Ammonia as N                             | 1359 | 1319 B | 1359QR | 25   |
| Carbamates/Carbamoxyloxime<br>Pesticides | 707  | 846 M  | 707QR  | 28   |
| Chloral Hydrate                          | 676  | 853 B  | 676QR  | 25   |
| Chlordane                                | 705  | 845 M  | 705QR  | 28   |
| Chlorinated Acid Herbicides              | 704  | 851 M  | 704QR  | 30   |
| Color                                    | 661  | 859 Q  | 661QR  | 26   |
| Corrosivity                              | 980  | 900 Q  | 980QR  | 26   |
| Cyanide                                  | 983  | 556 M  | 983QR  | 25   |
| Dioxin                                   | 663  | 857 Q  | 663QR  | 30   |
| EDB/DBCP/TCP                             | 706  | 847 M  | 706QR  | 30   |
| Gasoline Additives                       | 909  | 905 Q  | 909QR  | 27   |
| Haloacetic Acids (HAA)                   | 684  | 852 M  | 684QR  | 25   |
| Halomethanes (THMs)                      | 702  | 842 M  | 702QR  | 27   |
| Hardness                                 | 693  | 555 M  | 693QR  | 24   |
| Hexavalent Chromium                      | 658  | 854 Q  | 658QR  | 24   |
| Inorganic Disinfection #1                | 5272 | 5270 M | 5272QR | 25   |
| Inorganic Disinfection #2                | 5262 | 5260 M | 5262QR | 25   |
| Inorganics                               | 698  | 591 M  | 698QR  | 24   |
| Low-Level 1,2,3-TCP                      | 682  | 596 B  | 682QR  | 30   |
| Mercury                                  | 666  | 551 M  | 666QR  | 24   |
| Metals                                   | 697  | 590 M  | 697QR  | 24   |
|                                          |      |        |        |      |

| Description                            | CRM  | PT     | QR     | Page |
|----------------------------------------|------|--------|--------|------|
| Nitrite                                | 695  | 594 M  | 695QR  | 25   |
| o-Phosphate Nutrients                  | 667  | 558 M  | 667QR  | 25   |
| Organic Carbon                         | 669  | 557 M  | 669QR  | 26   |
| PCBs as Decachlorobiphenyl             | 708  | 839 Q  | 708QR  | 30   |
| Perchlorate                            | 910  | 903 Q  | 910QR  | 26   |
| Pesticides                             | 709  | 850 M  | 709QR  | 28   |
| PFAS Drinking Water                    | 735  | 960 Q  | 735QR  | 28   |
| PFAS Ground Water<br>and Surface Water | 731  | 929 Q  | 731QR  | 28   |
| pH                                     | 779  | 552 M  | 779QR  | 26   |
| Regulated Volatiles                    | 703  | 840 M  | 703QR  | 27   |
| Residual Chlorine                      | 696  | 593 M  | 696QR  | 25   |
| Semivolatiles #1                       | 690  | 848 M  | 690QR  | 30   |
| Semivolatiles #2 Herbicides            | 691  | 849 M  | 691QR  | 30   |
| Silica                                 | 785  | 902 Q  | 785QR  | 26   |
| Solids Concentrate                     | 5152 | 5150 M | 5152QR | 24   |
| Surfactants-MBAS                       | 784  | 901 Q  | 784QR  | 26   |
| Toxaphene                              | 700  | 844 M  | 700QR  | 28   |
| Turbidity                              | 699  | 592 M  | 699QR  | 26   |
| Unregulated Volatiles                  | 683  | 841 M  | 683QR  | 27   |
| Uranium                                | 930  | 858 Q  | 930QR  | 24   |
| UV 254 Absorbance                      | 662  | 904 Q  | 662QR  | 26   |
| Vanadium                               | 660  | 856 Q  | 660QR  | 24   |
|                                        |      |        |        |      |

**CRM:** A reference material characterized by a metrologically valid procedure for one or more specified properties, accompanied by a reference material certificate that provides the value of the specified property, its associated uncertainty, and a statement of metrological traceability.

A complete listing of ERA's CRMs can be found on our Scope of Accreditation for general requirements for competence of reference material producers available at www.eraqc.com/AboutERA/Accreditations.

**PT:** A Proficiency Test (PT) is an analysis of what is often referred to as a blind sample or a sample with unknown concentrations of analytes for the purpose of evaluating a laboratory's analytical performance.

**QR:** Similar to a Proficiency Test, a QuiK Response (QR) is a sample with unknown concentrations. However, unlike a scheduled PT, QR is on-demand and available at any time. Plus, your results are returned within two business days. QuiK Response can be used as a bilateral PT as referenced in the IUPAC/CITAC guide: Selection and use of PT schemes for a limited number of participants – chemical analytical labs.

**RM:** A material, sufficiently homogeneous and stable with respect to one or more specified properties, which has been established to be fit for its intended use in a measurement process.

All Waters ERA WS PTs open monthly (M), quarterly (Q), or biannually (B) unless otherwise noted. Quarterly months are January, April, July, and October. Biannual months are January and July.

#### Minerals/Solids

#### **Hardness**

 CRM
 PT
 QR

 Cat. #693
 Cat. #555
 M
 Cat. #693QR

One 250 mL whole-volume bottle is ready to analyze.

| Calcium                               | 30-90 mg/L  |
|---------------------------------------|-------------|
| Calcium hardness as CaCO <sub>3</sub> | 75-225 mg/L |
| Total hardness as CaCO <sub>3</sub>   | 83-307 mg/L |
| Magnesium                             | 2-20 mg/L   |
| Sodium                                | 12-50 mg/L  |

#### **Inorganics**

 CRM
 PT
 QR

 Cat. #698
 Cat. #591
 M
 Cat. #698QR

One 500 mL whole-volume bottle is ready to analyze. The CRM is also certified for sodium at 10–400 mg/L. For a sodium PT, order Hardness, Cat. #555.

| Alkalinity as CaCO <sub>3</sub>        | 25-200 mg/L |
|----------------------------------------|-------------|
| Chloride                               | 20-160 mg/L |
| Fluoride                               | 1–8 mg/L    |
| Nitrate as N                           | 3-10 mg/L   |
| Nitrate plus nitrite as N              | 3-10 mg/L   |
| Potassium                              | 10-40 mg/L  |
| Specific conductance at 25 °C          |             |
| Sulfate                                | 25-250 mg/L |
| Total dissolved solids (TDS) at 180 °C |             |

#### **Solids Concentrate**

CRM PT QR Cat. #5152 Cat. #5150 M

One 24 mL screw-cap vial with a powder yields 1 liter after dilution.

| Total filterable residue (TDS) at 180 °C | 100-1000 mg/L |
|------------------------------------------|---------------|
| Total solids (TS) at 105 °C              | 123-1100 mg/L |
| Total suspended solids (TSS)             | 23-100 mg/l   |



#### **Trace Metals**

#### Metals

 CRM
 PT
 QR

 Cat. #697
 Cat. #590
 M
 Cat. #697QR

One 15 mL screw-cap vial yields up to 2 liters after dilution. Use with ICP-OES, ICP-MS, and AA methods.

| Aluminum   | 130-1000 µg/L |
|------------|---------------|
| Antimony   | 6-50 μg/L     |
| Arsenic    | 5-50 μg/L     |
| Barium     | 500-3000 μg/L |
| Beryllium  | 2-20 μg/L     |
| Boron      | 800-2000 μg/L |
| Cadmium    | 2-50 μg/L     |
| Chromium   | 10-200 μg/L   |
| Copper     | 50-2000 μg/L  |
| Iron       | 100-1800 μg/L |
| Lead       | 5-100 μg/L    |
| Manganese  | 40-900 μg/L   |
| Molybdenum | 15-130 μg/L   |
| Nickel     | 10-500 μg/L   |
| Selenium   | 10-100 μg/L   |
| Silver     | 20-300 μg/L   |
| Thallium   | 2-10 μg/L     |
| Vanadium   | 50-1000 μg/L  |
| Aluminum   | 200-2000 μg/L |
|            |               |

#### Mercury

CRM PT QR
Cat. #666 Cat. #551 M Cat. #666QR

One 15 mL screw-cap vial yields up to 1 liter after dilution. Use with CVAA, ICP-MS, or CVAFS methods.

#### **Hexavalent Chromium**

 CRM
 PT
 QR

 Cat. #658
 Cat. #854
 Q

One 15 mL screw-cap vial yields up to 2 liters after dilution.

Hexavalent chromium.....5-50 µg/L

#### **Uranium**

CRM PT QR Cat. #930 Cat. #858 Q

One 15 mL screw-cap vial yields up to 2 liters after dilution. Use with ICP-MS methods.

#### Vanadium

CRM PT QR Cat. #856 Cat. #660QR

One 15 mL screw-cap vial yields up to 2 liters after dilution. Designed to meet California ELAP requirements.

Vanadium......5-50 μg/L

#### Disinfection By-Products

#### **Chloral Hydrate**

CRM Cat. #676 Cat. #853

**OR** Cat. #676QR

One 2 mL flame-sealed ampule yields in excess of 200 mL after dilution. Use with EPA Method 551, or other applicable method. Includes chloral hydrate at 4-30 μg/L.

B Waters ERA WS Chloral Hydrate PTs open in January and July.

#### **Haloacetic Acids (HAA)**

CRM Cat. #684 Cat. #852

QR Cat. #684QR

One 2 mL flame-sealed ampule yields up to 2 liters after dilution. Use with EPA Method 552, or other applicable method. Includes all the analytes below at 5-50 µg/L.

Bromochloroacetic acid Dibromoacetic acid

Dichloroacetic acid Monobromoacetic acid

Monochloroacetic acid Trichloroacetic acid

#### **Inorganic Disinfection #1**

**CRM** Cat. #5272 Cat. #5270

QR Cat. #5272QR

One 24 mL screw-cap vial yields up to 4 liters after dilution.

....60-180 µg/L .....100-1000 μg/L Chlorite

#### **Inorganic Disinfection #2**

**CRM** Cat. #5262 Cat. #5260



QR Cat. #5262QR

One 24 mL screw-cap vial yields up to 4 liters after dilution.

Bromate..... .....7-50 ua/L Bromide.... .....50-300 µg/L

#### **Darren Sauer** Senior Customer Service Representative



#### **Nutrients**

#### Ammonia as N

**CRM** Cat. #1359

Cat. #1319



QR Cat. #1359QR

One 15 mL screw-cap vial yeilds up to 1 liter after dilution.

B Waters ERA WS Ammonia as N PTs open in January and July.

#### **Nitrite**

**CRM** Cat. #695 Cat. #594



QR Cat. #695QR

One 15 mL screw-cap vial yields up to 2 liters after dilution.

#### o-Phosphate Nutrients

**CRM** Cat. #667 Cat. #558

М

OR Cat. #667QR

One 15 mL screw-cap vial yields up to 2 liters after dilution.

ortho-Phosphate as P..... .....0.5-5.5 mg/L

#### Miscellaneous Inorganic

#### **Residual Chlorine**

**CRM** Cat. #696

Cat. #593

QR Cat. #696QR

One 2 mL flame-sealed ampule yields up to 2 liters after dilution.

Total residual chlorine..... .....0.5-3 ma/L Free residual chlorine.....

#### Cyanide

Cat. #556

QR Cat. #983OR

One 15 mL screw-cap vial yields up to 2 liters after dilution. Source material is free cyanide.

Free cyanide.....

CRM - Certified Reference Material

PT - Proficiency Testing

QR - QuiK Response

All Waters ERA WS PTs open monthly (M), quarterly (Q), or biannually (B) unless otherwise noted. Quarterly months are January, April, July, and October.

#### Miscellaneous Inorganic (continued)

# Organic Carbon CRM PT QR Cat. #669 Cat. #557 M Cat. #669QR

One 15 mL screw-cap vial yields up to 1 liter after dilution.

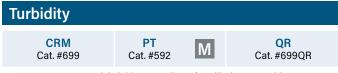
# Perchlorate CRM Cat. #910 PT Cat. #903 QR Cat. #910QR One 15 mL screw-cap vial yields up to 2 liters after dilution. Perchlorate \_\_\_\_\_\_\_\_4-20 µg/L

| рН                         |                        |       |                          |
|----------------------------|------------------------|-------|--------------------------|
| <b>CRM</b><br>Cat. #779    | <b>PT</b><br>Cat. #552 | M     | <b>QR</b><br>Cat. #779QR |
| One 250 mL whole-volume bo | ottle is ready to ana  | lyze. |                          |

.....5-10 units

| Silica                                               |                        |   |                          |
|------------------------------------------------------|------------------------|---|--------------------------|
| CRM<br>Cat. #785                                     | <b>PT</b><br>Cat. #902 | Q | <b>QR</b><br>Cat. #785QR |
| One 60 mL poly bottle yields 1 liter after dilution. |                        |   |                          |
| Silica as SiO <sub>2</sub>                           |                        |   | 5-75 mg/L                |

|   | Silica as SiO <sub>2</sub>                                     |                        |   | 5-/5 Hg/L                |
|---|----------------------------------------------------------------|------------------------|---|--------------------------|
|   | Surfactants-ME                                                 | BAS                    |   |                          |
|   | CRM<br>Cat. #784                                               | <b>PT</b><br>Cat. #901 | Q | <b>QR</b><br>Cat. #784QR |
| 0 | One 15 mL screw-cap vial yields up to 2 liters after dilution. |                        |   |                          |
|   | Surfactants-MBAS0.1-1 mg/L                                     |                        |   |                          |


#### **Physical Property**

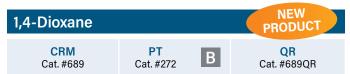


| Corrosivity                     |  |
|---------------------------------|--|
| CRM PT QR Cat. #980 Cat. #980QR |  |

One 500 mL whole-volume bottle is ready to analyze for corrosivity, calcium carbonate saturation, and Langelier Saturation Index.

Corrosivity -4 to +4 SI unit




One 15 mL screw-cap vial yields up to 1 liter after dilution. Use with nephelometric methods.



One 15 mL screw-cap vial yields up to 1 liter after dilution.



#### Volatile Organics



One 2 mL flame-sealed ampule yields 500 mL after dilution. Use with EPA method 522.

1.4-Dioxane...

#### **Gasoline Additives**

CRM PT QR Cat. #909 Cat. #905 Cat. #909QR

One 2 mL flame-sealed ampule yields in excess of 200 mL after dilution. Use with EPA Method 524.2, or other applicable method for gasoline additives/oxygenates. Contains all of the analytes below at 5-50  $\mu$ g/L.

tert-Amyl methyl ether (TAME) Ethyl tert-butyl ether (ETBE) tert-Butyl alcohol Di-isopropylether (DIPE)

Methyl tert-butyl ether (MTBE) (Freon 11)

Trichlorofluoromethane Trichlorotrifluoroethane (Freon 113)

#### Halomethanes (THMs)

CRM QR Cat. #702 Cat. #842 Cat. #702QR

One 2 mL flame-sealed ampule yields in excess of 200 mL after dilution. Use with EPA Methods 502.2, 524.2, 551, or other applicable method. Contains all of the analytes below at 5-50 µg/L.

Bromodichloromethane Bromoform

Chlorodibromomethane

Chloroform

#### **Regulated Volatiles**

CRM PT QR Cat. #703 Cat. #840 Cat. #703QR

One 2 mL flame-sealed ampule yields in excess of 200 mL after dilution. Use with EPA Methods 502.2, 524.2, or other applicable method. Contains all of the analytes below at 2-50 µg/L.

Benzene Carbon tetrachloride Chlorobenzene 1,2-Dichlorobenzene 1,4-Dichlorobenzene 1.2-Dichloroethane 1,1-Dichloroethylene

cis-1,2-Dichloroethylene trans-1,2-Dichloroethylene 1,2-Dichloropropane Ethylbenzene Methylene chloride Styrene Tetrachloroethylene

Toluene 1,2,4-Trichlorobenzene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethylene Vinyl chloride Xylenes, total

#### **Unregulated Volatiles**

**CRM** Cat. #683 Cat. #841

**OR** Cat. #683QR

One 2 mL flame-sealed ampule yields in excess of 200 mL after dilution. Use with EPA Methods 502.2, 524.2, or other applicable method. Contains at least 60% of the analytes randomly selected from the list below at 2-50 µg/L.

Bromobenzene Bromochloromethane Bromomethane n-Butylbenzene sec-Butylbenzene tert-Butvlbenzene Chloroethane Chloromethane 2-Chlorotoluene 4-Chlorotoluene Dibromomethane

1,3-Dichlorobenzene Dichlorodifluoromethane 1,1-Dichloroethane 1.3-Dichloropropane 2,2-Dichloropropane 1.1-Dichloropropene cis-1,3-Dichloropropene trans-1,3 Dichloropropene Fluorotrichloromethane Hexachlorobutadiene Isopropylbenzene

4-Isopropyltoluene Methyl tert-butyl ether (MTBE) Naphthalene n-Propylbenzene 1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,2,3-Trichlorobenzene 1,2,3-Trichloropropane 1.2.4-Trimethylbenzene 1,3,5-Trimethylbenzene

**CRM** - Certified Reference Material

PT - Proficiency Testing

QR - QuiK Response

All Waters ERA WS PTs open monthly (M), quarterly (Q), or biannually (B) unless otherwise noted. Quarterly months are January, April, July, and October.

#### Per- and Polyfluoroalkyl Substances (PFAS)

#### **PFAS Drinking Water** ANALYTES

**CRM** Cat. #735 Cat. #960

QR Cat. #735QR

NEW

One 2 mL flame sealed ampule yields in excess of 1.5 L after dilution. Use with EPA method 537. The diluted standard will contain 6-8 analytes in each lot selected from the list below.

| 11-chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11CI-PF3OUd<br>9-chlorohexadecafluoro-3-oxanonane-1-sulfonic acid (9CI-PF3ONS<br>N-ethyl perfluorooctanesulfonamidoacetic acid (NEtFOSAA) | s)50-500 ng/L |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| 4,8-dioxa-3H-perfluorononanoic acid (DONA)                                                                                                                                                     | •             |
| Hexafluoropropylene oxide dimer acid (HFPO-DA)                                                                                                                                                 |               |
| N-methyl perfluorooctanesulfonamidoacetic acid (NMeFOSAA)                                                                                                                                      | •             |
| Perfluorobutanesulfonic acid (PFBS)                                                                                                                                                            | •             |
| Perfluorodecanoic acid (PFDA)                                                                                                                                                                  | 50-500 ng/L   |
| Perfluorododecanoic acid (PFDoA)                                                                                                                                                               | 50-500 na/L   |
| Perfluoroheptanoic acid (PFHpA)                                                                                                                                                                | 50-500 ng/L   |
| Perfluorohexanesulfonic acid (PFHxS)                                                                                                                                                           |               |
| Perfluorohexanoic acid (PFHxA)                                                                                                                                                                 |               |
| Perfluorononanoic acid (PFNA)                                                                                                                                                                  | 50-500 ng/L   |
| Perfluorooctanesulfonic acid (PFOS)                                                                                                                                                            |               |
| Perfluorooctanoic acid (PFOA)                                                                                                                                                                  | 50-500 ng/L   |
| Perfluorotetradecanoic acid (PFTDA)                                                                                                                                                            |               |
| Perfluorotridecanoic acid (PFTrDA)                                                                                                                                                             | 50-500 ng/L   |
| Perfluoroundecanoic acid (PFUnDA)                                                                                                                                                              | 50-500 ng/L   |

#### **PFAS Ground Water** & Surface Water

**CRM** Cat. #731 Cat. #929

Q

QR Cat. #731QR

One 2 mL flame sealed ampule yields in excess of 1.5 L after dilution. Design is suitable for methods analyzing ground water or surface water. Use with LC-MS/MS techniques. The diluted standard will contain 6-12 analytes in each lot selected from the list below

| 11-chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11Cl-PF3OUdS)100-500 ng 9-chlorohexadecafluoro-3-oxanonane-1-sulfonic acid (9Cl-PF3ONS)100-500 ng 4,8-dioxa-3H-perfluorononanoic acid (DONA)                                                           | ,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>, |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Perfluorotetradecanoic acid (PFTDA)100-500 ng                                                                                                                                                                                                               | j/L                                                                                         |
| Perfluorotridecanoic acid (PFTrDA)100-500 ng Perfluoroundecanoic acid (PFUnDA)100-500 ng Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)100-500 ng Perfluoro(2-ethoxyethane)sulfonic acid (PFEESA)100-500 ng Perfluoro-3-methoxypropanoic acid (PFMPA)100-500 ng | g/L<br>g/L<br>g/L                                                                           |
| Perfluoro-4-methoxybutanoic acid (PFMBA)100–500 ng                                                                                                                                                                                                          |                                                                                             |

#### **Pesticides**

#### **Pesticides**

**CRM** Cat. #709

PT Cat. #850

**OR** Cat. #709QR

One 2 mL flame-sealed ampule yields up to 2 liters after dilution. Use with EPA Methods 505, 507, 508, 525, or other applicable method for organochlorine, nitrogen, and organophosphorus pesticides. Each standard contains at least 14 analytes randomly selected from the list below at 0.2-20  $\mu$ g/L.

| Alachlor  | Heptachlor                | Metribuzin        |
|-----------|---------------------------|-------------------|
| Aldrin    | Heptachlor epoxide (beta) | Molinate (ordram) |
| Atrazine  | Hexachlorobenzene         | Prometon          |
| Bromacil  | Hexachlorocyclopentadiene | Propachlor        |
| Butachlor | Lindane (gamma-BHC)       | Simazine          |
| Diazinon  | Methoxychlor              | Thiobencarb       |
| Dieldrin  | Metolachlor               | Trifluralin       |
| Endrin    |                           |                   |

#### Carbamate/Carbamoxyloxime Pesticides

**CRM** Cat. #707

Cat. #846

M

QR Cat. #707QR

One 2 mL flame-sealed ampule yields up to 2 liters after dilution. Use with EPA Methods 531.1, 531.2, 632, or other applicable method. Each standard contains at least 8 of the analytes below at 15-150  $\mu g/L$ .

Aldicarb Aldicarb sulfone Aldicarb sulfoxide Baygon

Carbaryl Carbofuran 3-Hydroxycarbofuran Methiocarb Methomyl Oxamyl

#### Chlordane

**CRM** Cat. #705

PT Cat. #845

OR Cat. #705QR

One 2 mL flame-sealed ampule yields up to 2 liters after dilution. Use with EPA Methods 505, 508, 525, or other applicable method. Each standard contains technical chlordane at 2-20  $\mu g/L$ .

#### Toxaphene

**CRM** Cat. #700

PT Cat. #844

QR Cat. #700QR

One 2 mL flame-sealed ampule yields up to 2 liters after dilution. Use with EPA Methods 505, 508, 525, or other applicable method. Each standard contains toxaphene at 2-20 µg/L.



**Brian Miller** Product Line Manager



# GET AHEAD OF INCREASING PFAS DEMANDS

PFASs have long been a contaminant of concern for environmental waters, but they are now emerging in food safety concerns. Laboratories are seeking fast and sensitive solutions to rapidly detect these pollutants in surface, ground, and waste waters to help target remediation efforts and prevent food chain contamination.

Waters offers robust analytical solutions to meet advisory levels for legacy and emerging PFASs:

- LC-MS/MS to reach detection limits in the low-to-sub ng/L range
- SPE sample preparation that allows for sample enrichment to increase sensitivity
- Large volume direct injection method to speed up analysis time
- Employ dependable solutions for POPs and chemical contaminant analysis.



Learn more at waters.com/environmental

#### Pesticides (continued)

# CRM PT QR Cat. #706 Cat. #847 M Cat. #706QR

One 2 mL flame-sealed ampule yields in excess of 200 mL after dilution. Use with EPA Methods 504, 551, or other applicable method. Each lot contains all analytes below at 0.05–2 ug/l.

1,2-Dibromo-3-chloropropane (DBCP) Ethylene dibromide (EDB) 1,2,3-Trichloropropane (1,2,3-TCP)

#### Low-Level 1,2,3-TCP

CRM PT QR Cat. #682 Cat. #596 B

One 2 mL flame-sealed ampule yields 100 mL after dilution. Use with California method SRL 524M, or other applicable method. Each standard contains 1,2,3-Trichloropropane (TCP) at 5-100 ng/L after dilution.

B Low-Level 1,2,3-TCP available in January and July.

#### Semivolatile Organics

# CRM PT QR Cat. #663 Cat. #857 Qat. #663QR

One 2 mL flame-sealed ampule yields up to 2 liters after dilution. Use with EPA Methods 613, 1613, 8280, 8290, or other applicable method. Each standard contains 2,3,7,8-TCDD at 20–100 pg/L.

#### PCBs as Decachlorobiphenyl

 CRM
 PT
 QR

 Cat. #708
 Cat. #839
 Q

One 2 mL flame-sealed ampule yields up to 2 liters after dilution. Use with EPA Quantitative Method 508A. This standard can also be used for aroclor identification and quantification using EPA Methods 505, 508, 508.1, or other applicable method. Includes an aroclor randomly selected from the list below at 0.5–5  $\mu g/L$  as decachlorobiphenyl.

 Aroclor 1016
 Aroclor 1242
 Aroclor 1254

 Aroclor 1221
 Aroclor 1248
 Aroclor 1260

 Aroclor 1232

#### Semivolatile Organics (continued)

#### Semivolatiles #1

 CRM
 PT
 QR

 Cat. #690
 Cat. #848
 M
 Cat. #690QR

One 2 mL flame-sealed ampule yields up to 2 liters after dilution. Use with EPA Methods 506, 525, 550, or other applicable method for PAHs, phthalates, and adipates. Each standard contains benzo(a)pyrene, bis(2-ethylhexyl)adipate, and bis(2-ethylhexyl)phthalate plus at least 13 additional analytes, selected from the list below, at 0.2–50  $\mu$ g/L.

Acenaphthene Butyl benzyl phthalate bis(2-Ethylhexyl)phthalate Acenaphthylene Chyrsene Fluoranthene Anthracene Dibenz(a,h)anthracene Fluorene Benzo(a)anthracene Di-n-butyl phthalate Indeno(1,2,3-cd)pyrene Benzo(b)fluoranthene Diethyl phthalate Naphthalene Dimethyl phthalate Benzo(k)fluoranthene Phenanthrene Benzo(g,h,i)perylene Di-n-octyl phthalate Pyrene Benzo(a)pyrene bis(2-Ethylhexyl)adipate

Naphthalene is not within the EPA/NELAC range. Use the Unregulated Volatiles standard (page 27 for this compound in the EPA/NELAC range.

#### Herbicides

#### **Chlorinated Acid Herbicides**

 CRM
 PT
 QR

 Cat. #704
 Cat. #851
 M
 Cat. #704QR

One 2 mL flame-sealed ampule yields up to 2 liters after dilution. Use with EPA Methods 515.1, 515.2, 515.3, 515.4, 555, or other applicable method. All lots include at least 10 analytes from the list below at 1–120  $\mu$ g/L.

Acifluorfen 4-Nitrophenol Dalapon Bentazon Dicamba Pentachlorophenol 3,5-Dichlorobenzoic acid Chloramben Picloram 2,4-D Dichlorprop 2,4,5-T 2,4,5-TP (silvex) 2.4-DB Dinoseb Dacthal diacid (DCPA)

#### Semivolatiles #2 Herbicides

CRM PT QR
Cat. #691 Cat. #849 M Cat. #691QR

One 2 mL flame-sealed ampule yields up to 2 liters after dilution. Use with EPA Methods 547, 548, 549, or other applicable method. Each standard contains all the analytes below at  $8-800 \mu g/L$ .

Diquat Glyphosate Paraquat Endothall

CRM - Certified Reference Material PT - Proficiency Testing QR - QuiK Response

All Waters ERA WS PTs open monthly (M), quarterly (Q), or biannually (B) unless otherwise noted. Quarterly months are January, April, July, and October.



# MAGNIFY YOUR DIOXIN DETECTION

The analysis of dioxins is particularly demanding due to encountered low-level regulatory exposure limits and complex sample matrices. Waters provides LC-MS/MS and GC-MS/MS systems for the detection and quantification of dioxins and related compounds at ultratrace levels. Combined with our analytical standards & reagents, proficiency testing (ERA), column and sample preparation products, and data management software, these solutions are designed to:

- Increase accuracy
- Enhance sensitivity
- Accelerate throughput
- Ensure compliance

Employ dependable solutions for POPs and chemical contaminant analysis.



THE SCIENCE OF WHAT'S POSSIBLE.™

Learn more at waters.com/environmental

# MICROBIOLOGY

Matrices with low and high concentrations of analytes for testing bacteria in drinking water and waste water. Samples are delivered as lyophilized pellets in a glass vial with phosphate buffer dilution water.

#### Water Pollution PT Schedule 2022

| Matar | Dallutian | /including | UST in Water) |
|-------|-----------|------------|---------------|
| waler |           |            | usi in waleri |

|   | Scheme # | Opens  | Closes       |
|---|----------|--------|--------------|
| Q | WP 324   | Jan 18 | Mar 4        |
|   | WP 325   | Feb 14 | Mar 31       |
|   | WP 326   | Mar 14 | Apr 28       |
| Q | WP 327   | Apr 11 | May 26       |
|   | WP 328   | May 16 | Jun 30       |
|   | WP 329   | Jun 13 | Jul 28       |
| Q | WP 330   | Jul 18 | Sep 1        |
|   | WP 331   | Aug 15 | Sep 29       |
|   | WP 332   | Sep 12 | Oct 27       |
| Q | WP 333   | Oct 14 | Nov 28       |
|   | WP 334   | Nov 4  | Dec 19       |
|   | WP 335   | Dec 12 | Jan 26, 2023 |

#### 2023

Water Pollution (including UST in Water) Scheme #

WP 346

WP 347

|   |        | -      |        |
|---|--------|--------|--------|
| Q | WP 336 | Jan 17 | Mar 3  |
|   | WP 337 | Feb 13 | Mar 30 |
|   | WP 338 | Mar 13 | Apr 27 |
| Q | WP 339 | Apr 17 | Jun 1  |
|   | WP 340 | May 15 | Jun 29 |
|   | WP 341 | Jun 12 | Jul 27 |
| Q | WP 342 | Jul 17 | Aug 31 |
|   | WP 343 | Aug 14 | Sep 28 |
|   | WP 344 | Sep 11 | Oct 26 |
| Q | WP 345 | Oct 13 | Nov 27 |

Opens

Nov 3

Dec 11

Closes

Dec 18

Jan 25, 2024

#### Contents

**CRM:** A reference material characterized by a metrologically valid procedure for one or more specified properties, accompanied by a reference material certificate that provides the value of the specified property, its associated uncertainty, and a statement of metrological traceability.

A complete listing of ERA's CRMs can be found on our Scope of Accreditation for general requirements for competence of reference material producers available at www.eraqc.com/AboutERA/Accreditations.

**PT:** A Proficiency Test (PT) is an analysis of what is often referred to as a blind sample or a sample with unknown concentrations of analytes for the purpose of evaluating a laboratory's analytical performance.

**QR:** Similar to a Proficiency Test, a QuiK Response (QR) is a sample with unknown concentrations. However, unlike a scheduled PT, QR is on-demand and available at any time. Plus, your results are returned within two business days. QuiK Response can be used as a bilateral PT as referenced in the IUPAC/CITAC guide: Selection and use of PT schemes for a limited number of participants – chemical analytical labs.

**RM:** A material, sufficiently homogeneous and stable with respect to one or more specified properties, which has been established to be fit for its intended use in a measurement process.

| Description                               | CRM  | PT     | QR     | Page |
|-------------------------------------------|------|--------|--------|------|
| Enterococci                               | 081  | 880 Q  | 787QR  | 34   |
| Heterotrophic Plate Count (WP)            |      | 935 B  |        | 34   |
| Heterotrophic Plate Count (WS)            | 084  | 079 M  | 084QR  | 34   |
| Massachusetts Ground<br>Water Enterococci | 081  | 077 *  | _      | 34   |
| Potable Water<br>Coliform Microbe         | 694  | 080 M  | 085QR  | 34   |
| Source Water Microbe                      | 078  | 595 Q  | 078QR  | 34   |
| Source Water Microbe - 9221               | 078A | 595A Q | 078AQR | 34   |
| Wastewater Coliform Microbe               | 083  | 576 M  | 786QR  | 34   |
| Wastewater Coliform<br>Microbe - 9221     | 083A | 576A M | 786AQR | 34   |
|                                           |      |        |        |      |

# **Water Supply PT Schedule 2022**

| Water Supply |          |        |              |
|--------------|----------|--------|--------------|
|              | Scheme # | Opens  | Closes       |
| Q            | WS 306   | Jan 10 | Feb 24       |
|              | WS 307   | Feb 7  | Mar 24       |
|              | WS 308   | Mar 7  | Apr 21       |
| Q            | WS 309   | Apr 4  | May 19       |
|              | WS 310   | May 9  | Jun 23       |
|              | WS 311   | Jun 6  | Jul 21       |
| Q            | WS 312   | Jul 11 | Aug 25       |
|              | WS 313   | Aug 8  | Sep 22       |
|              | WS 314   | Sep 6  | Oct 21       |
| Q            | WS 315   | Oct 7  | Nov 21       |
|              | WS 316   | Nov 1  | Dec 16       |
|              | WS 317   | Dec 5  | Jan 19, 2023 |

#### 2023

| Water Supply | /       |        |              |
|--------------|---------|--------|--------------|
|              | Scheme# | Opens  | Closes       |
| Q            | WS 318  | Jan 9  | Feb 23       |
|              | WS 319  | Feb 6  | Mar 23       |
|              | WS 320  | Mar 6  | Apr 20       |
| Q            | WS 321  | Apr 10 | May 25       |
|              | WS 322  | May 8  | Jun 22       |
|              | WS 323  | Jun 5  | Jul 20       |
| Q            | WS 324  | Jul 10 | Aug 24       |
|              | WS 325  | Aug 7  | Sep 21       |
|              | WS 326  | Sep 5  | Oct 20       |
| Q            | WS 327  | Oct 6  | Nov 20       |
|              | WS 328  | Oct 31 | Dec 15       |
|              | WS 329  | Dec 4  | Jan 18, 2024 |

All Waters ERA Microbiology PTs open monthly (M), quarterly (Q), or biannually (D) unless otherwise noted. Waters ERA Massachusetts Ground Water Enterococci PT is available any time. Quarterly months are January, April, July, and October.

#### WP Microbiology

#### **Wastewater Coliform Microbe**

CRM Cat. #083 PT Cat. #576 M

QR Cat. #786QR

Each PT sample is one lyophilized quantitative standard for use with all Clean Water Act quantitative methods, including MF and MPN. If determining MPN by SM 9221 or similar multiple tube techniques, use 083A, 576A, or 786A.

CRM also includes one blank sample. Each standard can be used for total coliform, fecal coliform, and *E. coli* which are present in the range 20–2400 CFU/100 mL or MPN/100 mL.

#### **Wastewater Coliform Microbe - 9221**

CRM Cat. #083A PT Cat. #576A M

QR Cat. #786AQR

Each PT sample is one lyophilized quantitative standard for use with Standard Methods 9221 or similar multiple tube techniques.

CRM also includes one blank sample. Each standard can be used for total coliform, fecal coliform, and *E. coli* which are present in the range of 20-2400 MPN/100 mL.

#### **Enterococci**

CRM Cat. #081

PT Cat. #880 Q

QR Cat. #787QR

Each PT sample is one lyophilized standard, which can be analyzed for enterococci and/or fecal streptococci, MF or MPN in the range 20–1000 CFU/100 mL or MPN/100 mL.

CRM also includes one blank sample. Use with EPA Methods 1106.1 and 1600, ASTM Methods D5259-92, D6503-99, and Standard Methods 9230B and 9230C, and Enterolert Quantitray.

#### **Heterotrophic Plate Count**

PT Cat. #935



One lyophilized sample containing a Heterotrophic bacteria. SPC PT standards are required for laboratories seeking NELAC accreditation as well as by many other state programs.

B Offered Biannually in March and September.

#### State-Specific Microbiology

#### **Massachusetts Ground Water Enterococci**

CRM Cat. #081

Cat. #077



Each PT sample set is composed of 10 lyophilized samples to be analyzed for presence or absence of enterococci. This sample is specifically designed for the State of Massachusetts certification for compliance with the federal Ground Water Rule. Each CRM sample set is composed of two lyophilized samples - one quantitative positive and one blank.

\* Massachusetts Ground Water Enterococci PT is available any time.

#### **WS Microbiology**

#### **Heterotrophic Plate Count**

CRM Cat. #084 PT Cat. #079 М

QR Cat. #084OR

Each sample is one lyophilized standard containing a heterotrophic bacteria present in the range 5–500 CFU/mL or MPN/mL. Use with the Standard Methods 9215B – Pour Plate Method, and Most Probable Number (MPN) Method (simplate).

#### Potable Water Coliform Microbe

CRM Cat. #694

PT Cat. #080 М

QR Cat. #085QR

Each sample set consists of lyophilized standards for the presence or absence analysis of total coliform, fecal coliform, and *E. coli*. The standards are applicable to all SDWA promulgated methods-MF, MPN, presence/absence, and ONPG-MUG. The Potable Water Coliform Microbe PT standard is available in all 12-monthly WS studies.

#### **Source Water Microbe**

CRM Cat. #078 PT Cat. #595 0

QR Cat. #078QR

Each sample is one lyophilized quantitative standard containing *E. coli* in the range 20–200 CFU/100 mL or MPN/100 mL. Use with all SDWA quantitative methods. Each standard can be used for total coliform, fecal coliform, and *E. coli*. If determining MPN by SM 9221 or similar multiple tube techniques, use 078A, 595A, and 078AQR.

#### Source Water Microbe - 9221

CRM Cat. #078A

PT Cat. #595A 0

QR Cat. #078AQR

Each sample is one lyophilized quantitative standard containing *E. coli* in the range of 20–200 MPN/100 mL for use with Standard Methods 9221 or similar multiple tube techniques. Each standard can be used for total coliforms, fecal coliforms, and *E. coli*.

**CRM** - Certified Reference Material

PT - Proficiency Testing

QR - QuiK Response

All Waters ERA Microbiology PTs open monthly (M) or quarterly (Q). Quarterly months are January, April, July, and October.



Learn more about Microbiology products

# GOING BEYOND THE STANDARD

Supplying Proficiency Testing (PT) and Certified Reference Material (CRM) standards is not unique. What sets us apart is our commitment to being more than a standards provider. Since 1977, we've worked as your partner, helping you produce reliable, defensible data, maintain critical accreditations, and make your laboratory successful.

- Data Tools to Help You Succeed: eDATA online PT data management portal allows you to effectively manage your proficiency testing program, assess risk, and evaluate trends over time.
- Expert Guidance at Your Fingertips: Direct access to one of the most qualified Customer Service and Technical Support teams in the environmental PT and CRM industry.
- Superior Standards for Better Results: Waters ERA maintains ISO 17025, ISO 17034, and ISO 17043 accreditations, giving you greater confidence in your data due to the largest studies, two-day report turn-around time, and more reliable performance evaluations.



# SOIL

Matrices designed to fulfill requirements for monitoring soil and solid matrices. Dried and homogenized standards of soil and sewage sludge may be used to satisfy PT requirements.





#### Soil (including UST in Soil) PT Schedule 2022 2023

| Soil (including UST in Soil) |          |        |        |  |  |
|------------------------------|----------|--------|--------|--|--|
|                              | Scheme # | Opens  | Closes |  |  |
| Q                            | SOIL 117 | Jan 24 | Mar 10 |  |  |
| Q                            | SOIL 118 | Apr 18 | Jun 2  |  |  |
| Q                            | SOIL 119 | Jul 25 | Sep 8  |  |  |
| Q                            | SOIL 120 | Oct 21 | Dec 5  |  |  |

| Soil (including UST in Soil) |          |        |        |  |  |
|------------------------------|----------|--------|--------|--|--|
|                              | Scheme # | Opens  | Closes |  |  |
| Q                            | SOIL 121 | Jan 23 | Mar 9  |  |  |
| Q                            | SOIL 122 | Apr 24 | Jun 8  |  |  |
| Q                            | SOIL 123 | Jul 24 | Sep 7  |  |  |
| Q                            | SOIL 124 | Oct 20 | Dec 4  |  |  |

#### Contents

| Description                              | CRM | PT    | QR    | Page |
|------------------------------------------|-----|-------|-------|------|
| 1,4-Dioxane in Soil                      | 538 | 461 B | 538QR | 39   |
| Anions in Soil                           | 543 | 873 Q | 543QR | 39   |
| Base/Neutrals & Acids in Soil            | 727 | 467 Q | 727QR | 41   |
| BTEX & MTBE in Soil                      | 761 | 633 Q | 761QR | 40   |
| Carbamate Pesticides in Soil             | 926 | 879 Q | 926QR | 43   |
| Chlordane in Soil                        | 725 | 628 Q | 725QR | 43   |
| Chlorinated Acid<br>Herbicides in Soil   | 723 | 626 Q | 723QR | 42   |
| Corrosivity/pH in Soil                   | 914 | 875 Q | 914QR | 38   |
| Cyanide in Soil                          | 541 | 621 Q | 541QR | 39   |
| Diesel Range<br>Organics (DRO) in Soil   | 765 | 631 Q | 765QR | 41   |
| Gasoline Range<br>Organics (GRO) in Soil | 763 | 630 Q | 763QR | 39   |
| Glycols in Soil                          | 928 | 463 Q | 928QR | 41   |
| Hexavalent Chromium in Soil              | 921 | 876 Q | 921QR | 38   |
| Ignitability/Flash Point                 | 979 | 874 Q | 979QR | 38   |
| Low-Level PAHs in Soil                   | 722 | 625 Q | 722QR | 41   |
| Metals & Cyanide<br>Blank Sand           | 058 | _     | _     | 43   |
| Metals & Cyanide<br>Blank Soil           | 057 | _     | _     | 43   |
| Metals in Sewage Sludge                  | 160 | 619 Q | 160QR | 38   |
| Metals in Soil                           | 540 | 620 Q | 540QR | 38   |
| Nitroaromatics &<br>Nitramines in Soil   | 920 | 871 Q | 920QR | 41   |

| Description                                           | CRM | PT          | QR                | Page |  |
|-------------------------------------------------------|-----|-------------|-------------------|------|--|
| Nutrients in Sludge                                   | 545 | _           | _                 | 39   |  |
| Nutrients in Soil                                     | 542 | 869 Q       | 542QR             | 39   |  |
| Oil & Grease in Soil                                  | 549 | 867 Q       | 549QR             | 39   |  |
| Organochlorine<br>Pesticides in Soil                  | 728 | 468 Q       | 728QR             | 43   |  |
| Organophosphorus<br>Pesticides (OPP) in Soil          | 925 | 878 Q       | 925QR             | 43   |  |
| PCBs in Oil                                           | 563 | 817 Q       | 563QR             | 42   |  |
| PCBs in Oil Standards                                 |     | see page 42 | for options       |      |  |
| PCBs in Soil                                          | 726 | 624 Q       | 726QR             | 42   |  |
| PCBs in Soil Standards see pag                        |     | see page 42 | ge 42 for options |      |  |
| Per- and Polyfluoroalkyl<br>Substances (PFAS) in Soil | 604 | 462 Q       | 604QR             | 41   |  |
| Ready-to-Use<br>VOAs in Soil                          | 924 | 870 Q       | 924QR             | 40   |  |
| TCLP Metals in Soil                                   | 544 | 629 Q       | 544QR             | 38   |  |
| TCLP Organochlorine<br>Pesticides                     | 732 | _           | 732QR             | 40   |  |
| TCLP Semivolatiles                                    | 737 | _           | 737QR             | 40   |  |
| TCLP Volatiles                                        | 730 | _           | 730QR             | 40   |  |
| Total Petroleum Hydrocarbons<br>(TPH) in Soil #1      | 570 | 632 Q       | 572QR             | 40   |  |
| Total Petroleum Hydrocarbons<br>(TPH) in Soil #2      | 571 | 632 Q       | 572QR             | 40   |  |
| Toxaphene in Soil                                     | 724 | 627 Q       | 724QR             | 43   |  |
| Volatiles in Soil                                     | 721 | 623 Q       | 721QR             | 39   |  |
|                                                       |     |             |                   |      |  |

**CRM:** A reference material characterized by a metrologically valid procedure for one or more specified properties, accompanied by a reference material certificate that provides the value of the specified property, its associated uncertainty, and a statement of metrological traceability.

A complete listing of ERA's CRMs can be found on our Scope of Accreditation for general requirements for competence of reference material producers available at www.eraqc.com/AboutERA/Accreditations.

**PT:** A Proficiency Test (PT) is an analysis of what is often referred to as a blind sample or a sample with unknown concentrations of analytes for the purpose of evaluating a laboratory's analytical performance.

**QR:** Similar to a Proficiency Test, a QuiK Response (QR) is a sample with unknown concentrations. However, unlike a scheduled PT, QR is on-demand and available at any time. Plus, your results are returned within two business days. QuiK Response can be used as a bilateral PT as referenced in the IUPAC/CITAC guide: Selection and use of PT schemes for a limited number of participants – chemical analytical labs.

**RM:** A material, sufficiently homogeneous and stable with respect to one or more specified properties, which has been established to be fit for its intended use in a measurement process.

All ERA Soil PTs open quarterly  $(\ \ \ \ \ )$  or biannually  $(\ \ \ \ \ \ )$ , unless otherwise noted. Quarterly months are January, April, July, and October.

#### Metals

#### **Metals in Soil**

NEW ANALYTE

CRM Cat. #540

PT Cat. #620 Q

**QR** Cat. #540QR

One 40 g soil sample in a screw-cap bottle for all ICP and AA, RCRA and Superfund Methods including EPA Digestion Methods 3050 Hot Plate and 3051 Microwave, or other applicable methods. Includes all metals shown below.

| Aluminum   |                   |
|------------|-------------------|
| Antimony   | 5 5               |
| Arsenic    |                   |
| Barium     | 100-1000 mg/kg    |
| Beryllium  | 40-400 mg/kg      |
| Boron      | 80-800 mg/kg      |
| Cadmium    | 40-400 mg/kg      |
| Calcium    | 1500-25,000 mg/kg |
| Chromium   | 40-400 mg/kg      |
| Cobalt     | 40-400 mg/kg      |
| Copper     | 40-400 mg/kg      |
| Iron       | 5000-50000 mg/kg  |
| Lead       | 40-400 mg/kg      |
| Lithium    | 50-250 mg/kg      |
| Magnesium  | 1200–25,000 mg/kg |
| Manganese  | 100–2000 mg/kg    |
| Mercury    | 1–35 mg/kg        |
| Molybdenum | 30–300 mg/kg      |
| Nickel     | 40-500 mg/kg      |
| Potassium  | 1400–25,000 mg/kg |
| Selenium   | 40–400 mg/kg      |
| Silver     | 20–100 mg/kg      |
| Sodium     | 150–15,000 mg/kg  |
| Strontium  | 40–400 mg/kg      |
| Thallium   | 40-400 mg/kg      |
| Tin        | 50-250 mg/kg      |
| Titanium   | 10-2000 mg/kg     |
| Uranium    | 1-250 mg/kg       |
| Vanadium   | 40-400 mg/kg      |
| Zinc       | 100-1000 mg/kg    |
|            | 0 0               |

#### **Hexavalent Chromium in Soil**

CRM Cat. #921

Cat. #876



QR Cat. #921QR

One 40 g standard in a screw-cap bottle for use with all promulgated hexavalent chromium methods.

Hexavalent chromium......40-300 mg/kg



#### **TCLP Metals in Soil**

CRM Cat. #544

PT Cat. #629 Q

QR Cat. #544QR

One 105 g soil standard in a screw-cap bottle designed specifically to meet all state requirements for TCLP extraction and analysis for the metals listed below. Sample is designed to be extracted with fluid #1.

| Antimony  | Cadmium  | Nickel   |
|-----------|----------|----------|
| Arsenic   | Chromium | Selenium |
| Barium    | Lead     | Silver   |
| Beryllium | Mercury  | Zinc     |

#### Metals in Sewage Sludge

CRM Cat. #160 **PT** Cat. #619

Q

QR Cat. #160QR

One 40 g sludge standard in a screw-cap bottle to be analyzed for the metals listed below.

| Aluminum           | 1000-50,000 mg/kg |
|--------------------|-------------------|
| AluminumAntimony   | 80-300 mg/kg      |
| Arsenic            | 50-400 mg/kg      |
| Barium             | 250-2000 mg/kg    |
| Beryllium          | 30-200 mg/kg      |
| Cadmium            | 40–300 mg/kg      |
| Calcium            | 5000-70,000 mg/kg |
| Chromium           | 40–300 mg/kg      |
| Cobalt             | 5-50 mg/kg        |
| Copper             | 40–1000 mg/kg     |
| Iron               | 1000-50,000 mg/kg |
| Lead               | 50-250 mg/kg      |
| MagnesiumManganese | 1200-25,000 mg/kg |
| Manganese          | 100-2000 mg/kg    |
| Mercury            | 1-50 ma/ka        |
| Molybdenum         | 5-250 mg/kg       |
| Nickel             | 40-250 mg/kg      |
| Potassium          | 1400-25,000 mg/kg |
| Selenium           | 50-250 mg/kg      |
| Silver             | 50-250 mg/kg      |
| Sodium             | 150-15,000 mg/kg  |
| Strontium          | 200-2000 mg/kg    |
| Thallium           | 50-250 mg/kg      |
| Vanadium           | 5-250 mg/kg       |
| Zinc               | 70-1500 mg/kg     |

#### **Physical Parameters**

#### Corrosivity/pH in Soil

CRM Cat. #914 **PT** Cat. #875

Q

**QR** Cat. #914QR

One 100 g soil standard in a screw-cap bottle. Use to measure corrosivity.

Corrosivity/pH......2-12 S.U.

#### Ignitability/Flash Point

**CRM** Cat. #979 **PT** Cat. #874 Q

QR Cat. #979OR

One standard packaged in three 30 mL bottles. Use to measure ignitability.

gnitability/flashpoint.....100-200°F

#### Oil & Grease

#### Oil & Grease in Soil

CRM Cat. #549

Cat. #867



QR Cat. #549QR

One screw-cap bottle containing 50 g of soil ready to analyze. Use with gravimetric method 9071B or infrared spectrometric analysis.

n-Hexane extractable material (O&G) (Gravimetric)..... n-Hexane extractable material (O&G) (Infrared)......300-3000 mg/kg

#### Inorganics

#### **Anions in Soil**

**NEW** ANALYTES

**CRM** Cat. #543

PT Cat. #873



QR Cat. #543QR

One 40 g soil standard in a screw-cap bottle designed for a DI water extraction procedure for all the anions listed below.

| Bromide                | 10-100 mg/kg   |
|------------------------|----------------|
| Chloride               | 200–1000 mg/kg |
| Fluoride               | 25–500 mg/kg   |
| Nitrate as N           | 25-500 mg/kg   |
| Nitrite as N           | 0-500 mg/kg    |
| Nitrate + Nitrite as N | 0-2000 mg/kg   |
| Phosphate as P         | 25-500 mg/kg   |
| Sulfate                | 25-2000 mg/kg  |

#### Cyanide in Soil

**CRM** Cat. #541

PT Cat. #621



QR Cat. #541QR

One 40 g soil standard in a screw-cap bottle for all distillation/colorimetric methods.

Amenable cyanide.....

#### **Nutrients in Soil**

**CRM** Cat. #542

Cat. #869



OR Cat. #542QR

One 40 g soil standard in a screw-cap bottle. Use to analyze for all the nutrients listed below.

| Ammonia as N                 | 300-3000 mg/kg    |
|------------------------------|-------------------|
| Total Kjeldahl nitrogen as N | 400-4000 mg/kg    |
| Total organic carbon (TOC)   | 1000-20,000 mg/kg |
| Total phosphorus as P        | 300-3000 mg/kg    |

#### **Nutrients in Sludge**

#### CRM

Cat. #545

One 40 g sludge standard in a screw-cap bottle is ready for analysis.

| Ammonia as N                   | -5% (w/w)  |
|--------------------------------|------------|
| Total Kjeldahl nitrogen as N2- | -10% (w/w) |
| Total organic carbon (TOC)5-   | 50% (w/w)  |
| Total phosphorus as P          | -10% (w/w) |

#### Volatiles

#### Volatiles in Soil

**CRM** Cat. #721

PT Cat. #623



QR Cat. #721QR

One 2 mL flame-sealed ampule in methanol requires spiking onto the provided ten grams of solid matrix before analysis. Use with EPA Methods 8021, 8260, or other applicable methods. Includes a subset of the analytes listed below at  $20\text{--}200~\mu\text{g/kg}$  (40-400  $\mu\text{g/kg}$  for total xylenes, 80-1000 for selected ketones, and  $100-1000 \mu g/kg$  for acetonitrile).

1.3-Dichlorobenzene

1,4-Dichlorobenzene

1,1-Dichloroethane

1.2-Dichloroethane

1,1-Dichloroethylene

1,2-Dichloropropane

1,3-Dichloropropane

2,2-Dichloropropane

1,1-Dichloropropene

Hexachlorobutadiene

Hexachloroethane

Isopropylbenzene

p-Isopropyltoluene

Methylene chloride

Naphthalene

Nitrobenzene

Styrene

n-Propylbenzene

Ethylbenzene

2-Hexanone

cis-1,2-Dichloroethylene

trans-1,2-Dichloroethylene

cis-1,3-Dichloropropylene

trans-1,3-Dichloropropylene

Methyl tert-butyl ether (MTBE)

4-Methyl-2-pentanone (MIBK)

Dichlorodifluoromethane

Acetone Acetonitrile Acrolein Benzene Bromobenzene Bromochloromethane Bromodichloromethane

Bromoform Bromomethane 2-Butanone (MEK) n-Butylbenzene sec-Butylbenzene

tert-Butylbenzene Carbon disulfide Carbon tetrachloride

> Chlorobenzene Chlorodibromomethane Chloroethane 2-Chloroethyl vinyl ether Chloroform

Chloromethane

2-Chlorotoluene 4-Chlorotoluene 1,2-Dibromo-3-chloropropane

(DBCP) 1,2-Dibromoethane (EDB) Dibromomethane 1,2-Dichlorobenzene

1,1,1,2-Tetrachloroethane

1.1.2.2-Tetrachloroethane Tetrachloroethene Toluene 1.2.3-Trichlorobenzene

1.2.4-Trichlorobenzene 1,1,1-Trichloroethane 1.1.2-Trichloroethane Trichloroethene Trichlorofluoromethane 1,2,3-Trichloropropane 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Vinyl acetate Vinyl chloride

m&p-Xylene

Xylenes, total

o-Xvlene

This standard is not compliant with the NELAC concentration for hexachloroethane, hexachlorobutadiene, and nitrobenzene. If a NELAC compliant sample is required for these analytes, use Ready-to-Use VOAs in Soil, or Base/Neutrals and Acids in Soil.

#### 1,4-Dioxane in Soil

**CRM** Cat. #538

PT Cat. #461



QR Cat. #538QR

One 2 mL flame-sealed ampule requires spiking onto the provided ten grams of solid matrix before analysis. Use with modified versions of EPA method 8260, 1624 or other applicable methods.

1.4-Dioxane...

#### Gasoline Range Organics (GRO) in Soil

**CRM** Cat. #763

Cat. #630



QR Cat. #763QR

One flame-sealed ampule with 20 g of soil spiked with unleaded regular gasoline in the range 100-2000 mg/kg. Use with purge and trap and modified EPA 8015 GC/FID Methods, or other applicable methods. Also use to test for BTEX in gasoline.

Note: This standard is not compliant with the NELAC concentration ranges for the BTEX analytes. If a NELAC-compliant sample for these analytes is required, use Volatiles in Soil, Cat. #623 or BTEX & MTBE Soil, Cat. #633.

All ERA Soil PTs open quarterly (Q) or biannually (B), unless otherwise noted. Quarterly months are January, April, July, and October.

#### Volatiles (continued)

#### **BTEX & MTBE in Soil**

**CRM** Cat. #761

P1 Cat. #633



**QR** Cat. #761QR

One 2 mL flame-sealed ampule requires spiking onto the ten grams of provided certified clean soil. Includes the anlaytes below at 20–200  $\mu$ g/kg (40–400  $\mu$ g/kg for total xylenes). Use with EPA Method 8021, or other applicable methods.

Benzene Ethylbenzene Methyl tert-butyl ether (MTBE)

Xylenes, total m&p Xylene o-Xylene

#### Ready-to-Use VOAs in Soil

CRM Cat. #924 **PT** Cat. #870



QR Cat. #924OR

One 20 mL flame-sealed ampule containing 10 g of soil and 10 mL of methanol is ready to analyze. Use with EPA Methods 8021, 8260, or other applicable methods. Includes a subset of the analytes listed below at  $1000-20,000 \, \mu g/kg$ .

Acetone Acetonitrile Acrolein Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon disulfide Carbon tetrachloride Chlorobenzene Chlorodibromomethane Chloroethane 2-Chloroethyl vinyl ether Chloroform Chloromethane 2-Chlorotoluene 4-Chlorotoluene 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane (EDB) Dibromomethane 1,2-Dichlorobenzene 1.3-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane 1,1-Dichloroethane 1.2-Dichloroethane 1,1-Dichloroethene cis-1,2-Dichloroethylene trans-1,2-Dichloroethylene 1,2-Dichloropropane 1,3-Dichloropropane 2,2-Dichloropropane 1,1-Dichloropropene cis-1,3-Dichloropropylene trans-1,3-Dichloropropylene Ethylbenzene Hexachlorobutadiene Hexachloroethane 2-Hexanone Isopropylbenzene p-Isopropyltoluene Methyl tert-butyl ether (MTBE) 4-Methyl-2-pentanone (MIBK)

Methylene chloride Naphthalene Nitrobenzene n-Propylbenzene Styrene 1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane Tetrachloroethene Toluene 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,1,1-Trichloroethane 1.1.2-Trichloroethane Trichloroethene Trichlorofluoromethane 1,2,3-Trichlorobenzene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Vinyl acetate Vinyl chloride m&p-Xvlene o-Xylene Xylenes, total



#### Total Petroleum Hydrocarbons

#### Total Petroleum Hydrocarbons (TPH) in Soil #1

CRM Cat. #570

PT Cat. #632



QR Cat. #572QR

One screw-top bottle with 50 g of soil to be analyzed for TPH. Use with EPA IR or Gravimetric Methods 8440, 9071B, or other applicable methods.

#### Total Petroleum Hydrocarbons (TPH) in Soil #2

CRM Cat. #571 **PT** Cat. #632

Q

QR Cat. #572QR

One screw-top bottle with 50 g of soil to be analyzed for TPH in the presence of interfering fatty acids. Use with EPA IR or Gravimetric Methods 8440, 9071B, or other applicable methods.

Non-polar extractable material (TPH) (Gravimetric).......300-3000 mg/kg Non-polar extractable material (TPH) (IR)......300-3000 mg/kg

#### **TCLP**

#### **TCLP Volatiles**

CRM Cat. #730 QR Cat. #730QR

One 2 mL flame-sealed ampule containing a subset of the analytes listed below, each at a concentration of 0.05–2.0 mg/L.

Benzene
2-Butanone (MEK)
Carbon tetrachloride
Chlorobenzene

Chloroform 1,4-Dichlorobenzene 1,2-Dichloroethane 1,1-Dichloroethylene Tetrachloroethylene Trichloroethylene Vinyl chloride

#### **TCLP Semivolatiles**

CRM Cat. #737

QR Cat. #737QR

One 2 mL flame-sealed ampule containing a subset of the analytes listed below, each at a concentration of 0.1–2.0 mg/L after dilution. All unspiked analytes are certified at < 0.5 mg/L.

1,4-Dichlorobenzene 2,4-Dinitrotoluene Hexachlorobenzene Hexachlorobutadiene Hexachloroethane
2-Methylphenol
3 & 4-Methylphenol

Nitrobenzene

Pentachlorophenol
Pyridine
2,4,5-Trichlorophenol

2,4,6-Trichlorophenol

#### TCLP Organochlorine Pesticides

CRM Cat. #732 QR Cat. #732QR

One 2 mL flame-sealed ampule containing a subset of the analytes listed below, each at a concentration of 0.01–0.2 mg/L after dilution. All unspiked analytes are certified at <0.1 mg/L.

Endrin Heptachlor Heptachlor epoxide gamma-BHC (Lindane)

Methoxychlor

#### Semivolatiles

#### **Nitroaromatics & Nitramines in Soil**

CRM Cat. #920 PT Cat. #871 Q

QR Cat. #920QR

Two flame-sealed ampules each containing 30 g of soil are ready to analyze. Use for EPA Methods 8330, 8091, or other applicable methods. Includes a subset of the analytes listed below at  $1500-15,000 \mu g/kg$ .

4-Amino-2,6-dinitrotoluene 2-Amino-4,6-dinitrotoluene 1,3-Dinitrobenzene HMX Nitrobenzene RDX Tetryl

2-Nitrotoluene 1,3,5-Trinitrobenzene
3-Nitrotoluene 2.4.6-Trinitrotoluene

2,4-Dinitrotoluene 2,6-Dinitrotoluene

4-Nitrotoluene

#### Per- & Polyfluoroalkyl Substances (PFAS) in Soil

NEW ANALYTES

CRM Cat. #604 **PT** Cat. #462

Q

QR Cat. #604QR

One flame-sealed ampule containing 10 g of soil. The standard is certified for all analytes listed below. Each lot will be spiked with 6-12 of the analytes specified in the range of 20-100  $\mu g/kg$  (40-100  $\mu g/kg$  for HFPO-DA). Design is suitable for methods analyzing these components with LC-MS/MS techniques.

11-chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11Cl-PF3OUdS)......20-100 µg/kg 9-chlorohexadecafluoro-3-oxanonane-1-sulfonic acid (9Cl-PF3ONS)......20-100 µg/kg 4,8-dioxa-3H-perfluorononanoic acid (DONA)...... N-ethyl perfluorooctanesulfonamidoacetic acid (NEtFOSAA)......20-100 μg/kg 1H. 1H. 2H, 2H-Perfluorodecanesulfonic acid (8:2 FTS)......20-100 ug/kg 1H, 1H, 2H, 2H-Perfluorohexanesulfonic acid (4:2 FTS)......20-100 μg/kg 1H, 1H, 2H, 2H-Perfluorooctanesulfonic acid (6:2 FTS).....20-100  $\mu$ g/kg Hexafluoropropylene oxide dimer acid (HFPO-DA).... N-methyl perfluorooctanesulfonamidoacetic acid (NMeFOSAA)......20-100 µg/kg Perfluorobutanesulfonic acid (PFBS) ..... Perfluorobutanoic acid (PFBA)...... Perfluorodecane sulfonic acid (PFDS)......20-100 μg/kg Perfluorodecanoic acid (PFDA).....20-100 µg/kg Perfluorododecanoic acid (PFDoA)..... .....20-100 μg/kg Perfluoroheptane sulfonic acid (PFHpS)......20-100 μg/kg Perfluoroheptanoic acid (PFHpA)......20-100 µg/kg Perfluorohexanesulfonic acid (PFHxS)......20-100 μg/kg Perfluorohexanoic acid (PFHxA)..... .....20-100 μg/kg Perfluorononane sulfonic acid (PFNS)..... ......20-100 µa/ka Perfluorononanoic acid (PFNA)..... Perfluorooctane sulfonamide (PFOSAm).....20-100 µg/kg Perfluorooctanesulfonic acid (PFOS)......20-100 µg/kg Perfluorooctanoic acid (PFOA)..... Perfluoropentanoic acid (PFPeA)......20-100 μg/kg Perfluoropentane sulfonic acid (PFPeS).....20-100 μg/kg Perfluorotetradecanoic acid (PFTDA)......20-100 μg/kg Perfluorotridecanoic acid (PFTrDA)......20-100 µg/kg Perfluoroundecanoic acid (PFUnDA).....20-100 μg/kg

#### Low-Level PAHs in Soil

CRM Cat. #722 **PT** Cat. #625

Q

QR Cat. #722QR

Two flame-sealed ampules each containing 30 g are ready to analyze. Use for EPA HPLC Method 8310, 8270 SIM, or other applicable method. Includes a subset of the analytes listed below at  $50-1000~\mu g/kg$ .

Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene

Benzo(b)fluoranthene

Benzo(k)fluoranthene

Benzo(g,h,i)perylene Benzo(a)pyrene Chrysene Dibenz(a,h)anthracene Fluoranthene

Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene

#### Diesel Range Organics (DRO) in Soil

CRM Cat. #765

**PT** Cat. #631 Q

QR Cat. #765QR

One flame-sealed ampule with 20 g of soil spiked with #2 Diesel Fuel in the range 300–3000 mg/kg. Use with modified EPA Method 8015, or other applicable GC/FID methods.

#### **Glycols in Soil**

CRM Cat. #928 PT Cat. #463 Q

QR Cat. #928OR

Two flame-sealed ampules each containing 30 g of soil are ready-to-use. Use with EPA Methods 8015B, 8430, 1671, or other applicable method. Includes all the analytes listed below at 75-200 mg/kg.

Diethylene glycol Ethylene glycol Propylene glycol Tetraethylene glycol Triethylene glycol

#### Base/Neutrals & Acids in Soil

NEW ANALYTES

CRM Cat. #727

P1 Cat. #467 Q

QR Cat. #727QR

Two flame-sealed ampules each containing 30 g of soil are ready-to-use. Use with EPA Method 8270, or other applicable method. Includes a subset of the analytes listed below at 500–15,000 ug/kg.

Acenaphthene
Acenaphthylene
Acetophenone
2-Amino-1-methylbenzene

(o-Toluidine)
Aniline
Anthracene
Atrazine
Benzaldehyde
Benzidine
Benzoic acid
Benzo(a)anthracene

Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(g,h,i)perylene Benzo(a)pyrene Benzyl alcohol Biphenyl

4-Bromophenyl phenyl ether Butyl benzyl phthalate Caprolactam Carbazole 4-Chloroaniline

4-Chloroaniline bis(2-Chloroethyl)ether bis(2-Chloroethoxy)methane 4-Chloro-3-methylphenol 2-Chlorophenol 4-Chlorophenyl phenyl ether

Chrysene
Dibenz(a,h)anthracene
Dibenzofuran
Di-n-butyl phthalate
1,2-Dichlorobenzene

1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3'-Dichlorobenzidine 2,4-Dichlorophenol 2,6-Dichlorophenol Diethyl phthalate

2,4-Dimethylphenol
Dimethyl phthalate
2,4-Dinitrophenol
2,4-Dinitrotoluene
2,6-Dinitrotoluene
her
Di-n-octyl phthalate

bis(2-Ethylhexyl)phthalate

am Fluoranthene
Fluorene
Aniline Hexachlorobenzene
Broethyl)ether Hexachlorobutadiene
Broethoxy)methane Hexachlorocyclopentadiene

4-Chloro-3-methylphenol Hexachloroethane
1-Chloronaphthalene Indeno(1,2,3-cd)pyrene
2-Chloronaphthalene Isophorone

2-Methyl-4,6-dinitrophenol 2-Methylnaphthalene

2-Methylphenol
3 & 4-Methylphenol
Naphthalene
2-Nitroaniline
3-Nitroaniline

3-Nitroaniline 4-Nitroaniline Nitrobenzene 2-Nitrophenol 4-Nitrophenol

N-Nitrosodiethylamine
N-Nitrosodimethylamine
N-Nitrosodiphenylamine
N-Nitroso-di-n-propylamine
2,2'-Oxybis(1-Chloropropane)
Pentachlorobenzene
Pentachlorophenol
Phenanthrene
Phenol

Pyridine 1,2,4,5-Tetrachlorobenzene 2,3,4,6-Tetrachlorophenol 1,2,4-Trichlorobenzene 2,4,5-Trichlorophenol

2,4,6-Trichlorophenol

Pyrene

All ERA Soil PTs open quarterly (12) or biannually (13), unless otherwise noted. Quarterly months are January, April, July, and October.

#### Herbicides

#### **Chlorinated Acid Herbicides in Soil**

CRM Cat. #723 PT Cat. #626 Q

QR Cat. #723QR

Two flame-sealed ampules, each containing 30 g of soil are ready-to-use. Use with EPA Method 8151, or other applicable methods. Includes a subset of the analytes listed below at  $100-1000~\mu g/kg$  (MCPA & MCPP  $1000-10,000~\mu g/kg$ ).

| Acifluorfen           | Dalapon                  | MCPP              |
|-----------------------|--------------------------|-------------------|
| Bentazon              | Dicamba                  | 4-Nitrophenol     |
| Chloramben            | 3,5-Dichlorobenzoic acid | Pentachlorophenol |
| 2,4-D                 | Dichlorprop              | Picloram          |
| 2,4-DB                | Dinoseb                  | 2,4,5-T           |
| Dacthal diacid (DCPA) | MCPA                     | 2,4,5-TP (Silvex) |

This standard is not compliant with the NELAC concentration for 4-Nitrophenol. If a NELAC compliant sample is required for this analyte, use Base/Neutrals and Acids in Soil.

#### **PCBs**

#### **PCBs in Oil**

CRM Cat. #563

**PT** Cat. #817 Q

QR Cat. #563QR

One 10 mL flame-sealed ampule is ready to analyze. Contains a different Aroclor, randomly selected from the list below at 10–50 mg/kg.

Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260

#### PCBs in Oil Standards

PCBs in oil standards are sold individually in ready-to-use flame-sealed ampules with 5 g of oil. Use with EPA Methods 8082, EPA-600/4-81-045, Sept. 1982, or other applicable methods. LOW LEVEL standards contain an aroclor in the range 10-50 ppm. HIGH LEVEL standards contain an aroclor in the range 51-500 ppm.

| CRM Cat. # | Concentration | Aroclor | Range      |
|------------|---------------|---------|------------|
| 820        | Low           | 1242    | 10-50 ppm  |
| 821        | High          | 1242    | 51-500 ppm |
| 826        | Low           | 1248    | 10-50 ppm  |
| 827        | High          | 1248    | 51-500 ppm |
| 822        | Low           | 1254    | 10-50 ppm  |
| 823        | High          | 1254    | 51-500 ppm |
| 824        | Low           | 1260    | 10-50 ppm  |
| 825        | High          | 1260    | 51-500 ppm |

#### **PCBs in Soil**

CRM Cat. #726

**PT** Cat. #624

Q

QR Cat. #726QR

One screw-top bottle containing 50 grams of standard is ready to analyze. Use with EPA Method 8082, or other applicable methods. Each standard includes a different aroclor randomly selected from the list below at 1–50 mg/kg.

Aroclor 1016 Aroclor 1221 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260

Aroclor 1232

#### **PCBs in Soil Standards**

PCBs in soil standards are sold individually in screw-top bottles containing 50 g of soil. Use with EPA Methods 8082, 4020, or other applicable methods. LOW LEVEL standards contain an aroclor in the range 0.5–50 ppm. HIGH LEVEL standards contain an aroclor in the range 51–500 ppm.

| CRM Cat. # | Concentration | Aroclor | Range      |
|------------|---------------|---------|------------|
| 490        | Low           | 1242    | 0.5-50 ppm |
| 491        | High          | 1242    | 51-500 ppm |
| 496        | Low           | 1248    | 0.5-50 ppm |
| 497        | High          | 1248    | 51-500 ppm |
| 492        | Low           | 1254    | 0.5-50 ppm |
| 493        | High          | 1254    | 51-500 ppm |
| 494        | Low           | 1260    | 0.5-50 ppm |
| 495        | High          | 1260    | 51-500 ppm |



Learn more about Soil products







**Darwin Baxter**Application Engineer

#### **Pesticides**

#### **Organochlorine Pesticides in Soil**

**CRM** Cat. #728 Cat. #468

Q

QR Cat. #728QR

Two flame-sealed ampules each containing 30 g of soil are ready-to-use. Use with EPA Method 8081, or other applicable methods. Includes a subset of the analytes listed below at 50-500 µg/kg.

Aldrin 4,4'-DDD alpha-BHC 4,4'-DDE beta-BHC 4,4'-DDT delta-BHC Dieldrin gamma-BHC (Lindane) Endosulfan I alpha-Chlordane Endosulfan II gamma-Chlordane Endosulfan sulfate Endrin Endrin aldehvde Endrin ketone Heptachlor Heptachlor epoxide Methoxychlor

#### **Chlordane in Soil**

**CRM** Cat. #725

PT Cat. #628 Q

QR Cat. #725QR

One screw-top bottle containing 50 g of soil is ready to analyze. Use with EPA Method 8081, or other applicable methods. The standard contains technical chlordane at 100-1000 μg/kg.

#### Toxaphene in Soil

**CRM** Cat. #724

Cat. #627



QR Cat. #724OR

One screw-top bottle containing 50 g of soil is ready to analyze. Use with EPA Method 8081, or other applicable methods. The standard contains toxaphene at 200-2000 μg/kg.

#### Carbamate Pesticides in Soil

**CRM** Cat. #926

Cat. #879



QR Cat. #926QR

Two flame-sealed ampules, each containing 30 g of soil are ready to analyze. Use with EPA Methods 8318, 8321, or other applicable methods. Each standard contains a subset of the analytes listed below at 250-2500 µg/kg.

Aldicarb Aldicarb sulfone Aldicarb sulfoxide Carbaryl Carbofuran

Dioxacarb Diuron 3-Hydroxycarbofuran Methiocarb Methomyl

Oxamvl Promecarb Propham Propoxur

#### Organophosphorus Pesticides (OPP) in Soil

**CRM** Cat. #925

Cat. #878



QR Cat. #925QR

Two flame-sealed ampules, each containing 30 g of soil are ready to analyze. Use with EPA Method 8141, or other applicable methods. Each standard contains a subset of the analytes listed below at 100-1000 µg/kg.

Azinphos-methyl (Guthion) Chlorpyrifos

Dichlorvos (DDVP) Disulfoton

Phorate Ronnel

Ethyl parathion (Parathion) Demeton O & S Malathion Methyl parathion Diazinon

Stirophos (Tetrachlorovinphos)

Terbufos

#### Blank Soil

#### **Metals & Cyanide Blank Sand**

**CRM** Cat. #058

One 40 g sand sample in a screw-cap bottle. The concentrations of all EPA/NELAC including the priority pollutant metal and cyanide analytes are below the CLP Required Detection Limits (CRDLs) except iron, which is <250 mg/kg.

#### Metals & Cyanide Blank Soil

**CRM** 

Cat. #057

One 40 g soil sample in a screw-cap bottle. The concentrations of all of the following analytes are below the CLP CRDL's: antimony, arsenic, beryllium, cadmium, cobalt, mercury, nickel, selenium, silver, sodium, thallium, and cyanide. The concentrations of the following analytes are below 10x the CLP CRDL's: barium, chromium, copper, lead, magnesium, potassium, and vanadium. The concentrations of manganese and zinc are <750 mg/kg. The concentration range for aluminum, calcium, and iron is 3000-25,000 mg/kg.



All ERA Soil PTs open quarterly (Q) or biannually (B), unless otherwise noted. Quarterly months are January, April, July, and October.

# WITH eDATA: BOD, COD, AND TOC CAN BE AS EASY AS CSV!

Your time is valuable and should be spent doing more important things than manually entering PT results. Achieve piece of mind knowing that transcription errors are eliminated when you upload your PT results to Waters ERA's online PT data management portal – eDATA.

#### eDATA allows you to:

- Identify failures and risks to your accreditation
- Review your performance and evaluate overall results
- Investigate root cause and evaluate corrective actions
- Proactively monitor analyte risk to identify possible future non-conformances

Learn more at eragc.com/edata





# UNDERGROUND STORAGE TANK

Our Underground Storage Tank (UST) products in water and soil matrices are purposefully designed to meet accreditation requirements for Petroleum Hydrocarbons analysis in various jurisdictions.



#### **UST in Water PT Scheme Schedule**

2022

2023

| UST in Water |          |        |        |
|--------------|----------|--------|--------|
|              | Scheme # | Opens  | Closes |
| Q            | WP 324   | Jan 18 | Mar 4  |
| Q            | WP 327   | Apr 11 | May 26 |
| Q            | WP 330   | Jul 18 | Sep 1  |
| Q            | WP 333   | Oct 14 | Nov 28 |

| UST in Water |          |        |        |
|--------------|----------|--------|--------|
|              | Scheme # | Opens  | Closes |
| Q            | WP 336   | Jan 17 | Mar 3  |
| Q            | WP 339   | Apr 17 | Jun 1  |
| Q            | WP 342   | Jul 17 | Aug 31 |
| Q            | WP 345   | Oct 13 | Nov 27 |

#### Soil (including UST in Soil) PT Schedule 2022

Soil (including UST in Soil)

|   | Scheme # | Opens  | Closes |
|---|----------|--------|--------|
| Q | SOIL 117 | Jan 24 | Mar 10 |
| Q | SOIL 118 | Apr 18 | Jun 2  |
| Q | SOIL 119 | Jul 25 | Sep 8  |
| Q | SOIL 120 | Oct 21 | Dec 5  |

2023

| Soil (including UST in Soil) |          |        |        |  |
|------------------------------|----------|--------|--------|--|
|                              | Scheme#  | Opens  | Closes |  |
| Q                            | SOIL 121 | Jan 23 | Mar 9  |  |
| Q                            | SOIL 122 | Apr 24 | Jun 8  |  |
| Q                            | SOIL 123 | Jul 24 | Sep 7  |  |
| Q                            | SOIL 124 | Oct 20 | Dec 4  |  |

Schedule subject to change - see Waters ERA's website at

#### Contents

| Description                         | CRM | PT    | QR    | Page |
|-------------------------------------|-----|-------|-------|------|
| Alaska BTEX in Soil                 | 636 | _     | 470QR | 49   |
| Alaska BTEX in Water                | 646 | _     | 474QR | 49   |
| Alaska DRO in Soil                  | 637 | _     | 471QR | 49   |
| Alaska DRO in Water                 | 647 | _     | 475QR | 49   |
| Alaska GRO in Soil                  | 635 | _     | 469QR | 49   |
| Alaska GRO in Water                 | 645 | _     | 473QR | 49   |
| Alaska RRO in Soil                  | 638 | _     | 472QR | 49   |
| Arizona TPH in Soil                 | 798 | 488 Q | 798QR | 49   |
| BTEX & MTBE in Soil                 | 761 | 633 Q | 761QR | 48   |
| BTEX & MTBE in Water                | 760 | 643 Q | 760QR | 48   |
| Diesel Range<br>Organics in Soil    | 765 | 631 Q | 765QR | 48   |
| Diesel Range Organics<br>in Water   | 764 | 641 Q | 764QR | 48   |
| Gasoline Range<br>Organics in Soil  | 763 | 630 Q | 763QR | 48   |
| Gasoline Range<br>Organics in Water | 762 | 640 Q | 762QR | 48   |
| Massachusetts EPH in Soil           | 569 | 484 Q | 569QR | 50   |
| Massachusetts VPH in Soil           | 568 | 483 Q | 568QR | 50   |
| Massachusetts EPH in Water          | 567 | 482 Q | 567QR | 50   |
| Massachusetts VPH in Water          | 566 | 481 Q | 566QR | 50   |

| Description                                              | CRM | PT    | QR    | Page |
|----------------------------------------------------------|-----|-------|-------|------|
| New Jersey EPH in Soil                                   | 564 | 464 B | 564QR | 50   |
| Texas High-Level<br>Fuels in Soil                        | 797 | 479 Q | 797QR | 49   |
| Texas High-Level<br>Fuels in Water                       | 795 | 477 Q | 795QR | 49   |
| Texas Low-Level<br>Fuels in Soil                         | 796 | 478 Q | 796QR | 49   |
| Texas Low-Level<br>Fuels in Water                        | 794 | 476 Q | 794QR | 49   |
| Total Petroleum Hydrocarbons<br>(TPH) in Soil #1         | 570 | 632 Q | 572QR | 48   |
| Total Petroleum Hydrocarbons<br>(TPH) in Soil #2         | 571 | 632 Q | 572QR | 48   |
| Total Petroleum Hydrocarbons<br>(TPH) in Water #1        | 600 | 642 Q | 602QR | 48   |
| Total Petroleum Hydrocarbons<br>(TPH) in Water #2        | 601 | 642 Q | 602QR | 48   |
| Washington HEM/SGT-HEM                                   | 519 | 489 Q | 519QR | 50   |
| Wisconsin Gasoline Range<br>Organics (GRO/PVOC) in Water | 773 | 649 Q | 773QR | 50   |
| Wisonsin Diesel Range<br>Organics (DRO) in Water         | 772 | 648 Q | 772QR | 50   |

**CRM:** A reference material characterized by a metrologically valid procedure for one or more specified properties, accompanied by a reference material certificate that provides the value of the specified property, its associated uncertainty, and a statement of metrological traceability.

A complete listing of ERA's CRMs can be found on our Scope of Accreditation for general requirements for competence of reference material producers available at www.eraqc.com/AboutERA/Accreditations.

**PT:** A Proficiency Test (PT) is an analysis of what is often referred to as a blind sample or a sample with unknown concentrations of analytes for the purpose of evaluating a laboratory's analytical performance.

**QR:** Similar to a Proficiency Test, a QuiK Response (QR) is a sample with unknown concentrations. However, unlike a scheduled PT, QR is on-demand and available at any time. Plus, your results are returned within two business days. QuiK Response can be used as a bilateral PT as referenced in the IUPAC/CITAC guide: Selection and use of PT schemes for a limited number of participants – chemical analytical labs.

**RM:** A material, sufficiently homogeneous and stable with respect to one or more specified properties, which has been established to be fit for its intended use in a measurement process.

All Waters ERA UST PTs open quarterly (Q) unless otherwise noted. Quarterly months are January, April, July, and October.

B Waters ERA NJ EPH in Soil PT opens in April and October.

#### **UST** in Soil

#### **BTEX & MTBE in Soil**

CRM Cat. #761 PT Cat. #633 Q

QR Cat. #761QR

One 2 mL flame-sealed ampule requires spiking onto the ten grams of provided certified clean soil. Includes all the BTEX compounds and MTBE at 20– $200 \mu g/kg$  (40– $400 \mu g/kg$  for total xylenes). Use with EPA Method 8021, or other applicable methods.

#### Gasoline Range Organics (GRO) in Soil

CRM Cat. #763

P1 Cat. #630 Q

QR Cat. #763QR

One flame-sealed ampule with 20 g of soil spiked with unleaded regular gasoline in the range 100–2000 mg/kg. Use with purge and trap and modified EPA Method 8015, or other applicable GC/FID methods. Also use to test for BTEX in gasoline.

Note: This standard is not compliant with the NELAC concentration ranges for the BTEX analytes. If a NELAC-compliant sample for these analytes is required, use Volatiles in Soil, Cat. #623 or BTEX & MTBE Soil, Cat. #633.

#### Diesel Range Organics (DRO) in Soil

CRM Cat. #765 PT Cat. #631 Q

QR Cat. #765OR

One flame-sealed ampule with 20 g of soil spiked with #2 Diesel Fuel in the range 300–3000 mg/kg. Use with modified EPA Method 8015, or other applicable GC/FID methods.

#### Total Petroleum Hydrocarbons (TPH) in Soil #1

CRM Cat. #570 P1 Cat. #632 Q

QR Cat. #572QR

One screw-top bottle with 50 g of soil to be analyzed for total petroleum hydrocarbons (TPH). Use with EPA IR, Gravimetric Methods 8440 and 9071B, or other applicable methods.

#### Total Petroleum Hydrocarbons (TPH) in Soil #2

CRM

Cat. #571

Cat. #632

Q

QR Cat. #572OR

One screw-top bottle contains 50 g of soil with TPH in the presence of interfering fatty acids. Use with EPA Methods 8440, 9071B, or other applicable methods.

#### **UST** in Water

#### BTEX & MTBE in Water

CRM Cat. #760

PT Cat. #643 Q

QR Cat. #760QR

One 2 mL flame-sealed ampule yields in excess of 200 mL after dilution. Use with EPA Methods 602, 8021, or other applicable methods. Includes all BTEX compounds and MTBE at 5–300  $\mu$ g/L after dilution.

#### Gasoline Range Organics (GRO) in Water

CRM Cat. #762 PT Cat. #640 Q

QR Cat. #762QR

One 2 mL flame-sealed ampule yields up to 2 liters after dilution. Use with both purge and trap, and modified EPA Method 8015, or other applicable GC/FID methods to test for GRO at  $400-4000~\mu g/L$ . Also use to test for BTEX in gasoline.

#### Diesel Range Organics (DRO) in Water

CRM Cat. #764

Cat. #641

Q

QR Cat. #764OR

One 2 mL flame-sealed ampule yields up to 2 liters after dilution. Use with modified EPA Method 8015, or other applicable GC/FID methods. Includes #2 Diesel Fuel at  $800-6000~\mu g/L$ .

#### Total Petroleum Hydrocarbons (TPH) in Water #1

CRM Cat. #600

Cat. #642

Q

QR Cat. #602QR

One liter whole-volume bottle is ready to analyze for total petroleum hydrocarbons (TPH) without interferring fatty acids. Use with EPA Methods 418.1, 1664, 5520, or other applicable methods.

Total petroleum hydrocarbons......20-200 mg/L

#### Total Petroleum Hydrocarbons (TPH) in Water #2

CRM Cat. #601

Cat. #642

Q

QR Cat. #602QR

One liter whole-volume bottle is ready to analyze for TPH in water in the presence of interfering fatty acids. Use with EPA Methods 418.1, 1664, 5520, 8440, or other applicable methods.

Total petroleum hydrocarbons......20-200 mg/L



Learn more about Underground Storage products



48

#### Alaska UST in Water

#### Alaska GRO in Water

**CRM**Cat. #645

Cat. #473QR

One 2 mL flame-sealed ampule. Use with method AK101 for unleaded regular gasoline at  $100-500 \mu g/L$  after dilution.

#### Alaska DRO in Water

 CRM
 QR

 Cat. #647
 Cat. #475QR

One 2 mL flame-sealed ampule. Use with method AK102 for #2 Diesel Fuel at  $800-2300~\mu g/L$  after dilution.

#### Alaska BTEX in Water

**CRM**Cat. #646

Cat. #474QR

One 2 mL flame-sealed ampule. Use with method AK101 for all BTEX analytes at 5–30  $\mu g/L$  after dilution.

#### Alaska UST in Soil

#### Alaska GRO in Soil

 CRM
 QR

 Cat. #635
 Cat. #469QR

One 20 mL flame-sealed ampule with 10 g of soil and 10 mL of methanol with unleaded regular gasoline at 30–1500 mg/kg. Use with method AK101.

#### Alaska DRO in Soil

**CRM**Cat. #637

Cat. #471QR

One flame-sealed ampule with 20 g of soil spiked with #2 Diesel Fuel at 30–1500 mg/kg. Use with method AK102.

#### Alaska RRO in Soil

**CRM**Cat. #638

Cat. #472QR

One flame-sealed ampule with 20 g of soil with Residual Range Organic fuels at  $150-2000\ mg/kg$ . Use with method AK103.

#### Alaska BTEX in Soil

 CRM
 QR

 Cat. #636
 Cat. #470QR

One 2 mL flame-sealed ampule along with clean soil matrix for spiking. Use with method AK101 for all BTEX analytes at  $5-100\ mg/kg$  after spiking.

#### Arizona UST in Soil

#### **Arizona TPH in Soil**

CRM Cat. #798 PT Cat. #488 Q

QR Cat. #798OR

One ready-to-use flame-sealed ampule with 30 g of soil with Oil Range Organics and #2 Diesel Fuel. Use with method 8015AZ for TPH in the range 300–400 mg/kg. Also includes two carbon ranges.

#### Texas TPH in Water

All Texas TPH PT standards are designed for use with TNRCC 1005 method. The standards meet the requirements of all states that accredit for these methods including Texas, Louisiana, and Oklahoma.

#### Texas Low-Level Fuels (TPH) in Water

CRM Cat. #794

PT Cat. #476 Q

QR Cat. #794QR

One 2 mL flame-sealed ampule yields in excess of 200 mL after dilution. Contains unleaded regular gasoline and #2 Diesel Fuel resulting in TPH in the range 5–10 mg/L.

#### Texas High-Level Fuels (TPH) in Water

CRM Cat. #795

Cat. #477

Q

QR Cat. #795QR

One 2 mL flame-sealed ampule yields in excess of 200 mL after dilution. Contains unleaded regular gasoline and #2 Diesel Fuel resulting in TPH in the range 20–100 mg/L.

#### Texas TPH in Soil

#### Texas Low-Level Fuels (TPH) in Soil

CRM Cat. #796

Cat. #478

Q

QR Cat. #796QR

One ready-to-use flame-sealed ampule with 20 g of soil with unleaded gasoline and #2 Diesel Fuel for TPH in the range 50–100 mg/kg.

#### Texas High-Level Fuels (TPH) in Soil

CRM Cat. #797 PT Cat. #479 Q

QR Cat. #797QR

One ready-to-use flame-sealed ampule with 20 g of soil with unleaded gasoline and #2 Diesel Fuel for TPH in the range 1000–20,000 mg/kg.

**CRM** - Certified Reference Material

PT - Proficiency Testing

QR - QuiK Response

RM - Reference Material

All Waters ERA UST PTs open quarterly (Q) unless otherwise noted. Quarterly months are January, April, July, and October.

## Wisconsin GRO/PVOC/DRO Method UST

All Wisconsin UST PT standards are designed for use with Wisconsin GRO/PVOC or DRO Methods. The standards meet the requirements of all states that accredit for these methods including Wisconsin and Minnesota.

#### Wisconsin Gasoline Range Organics (GRO/PVOC) in Water

CRM Cat. #773 **PT** Cat. #649

Q

QR Cat. #773QR

One 2 mL flame-sealed ampule yields in excess of 200 mL after dilution. Includes ten gasoline range synthetic organic compounds as defined by Wisconsin. Use with Wisconsin GRO/PVOC Method.

#### Wisconsin Diesel Range Organics (DRO) in Water

CRM Cat. #772 PT Cat. #648 Q

QR Cat. #772QR

One 2 mL flame-sealed ampule yields up to 2 liters after dilution. Includes ten diesel range synthetic organic compounds in the range 200–600  $\mu g/L.$  Use with the Wisconsin DRO Method.

### Washington HEM/SGT-HEM Method UST

The Washington UST PT standard is designed for use with EPA Method 1664 for HEM/SGT-HEM.

#### Washington HEM/SGT-HEM

CRM Cat. #519

Cat. #489

Q

QR Cat. #519QR

One 5 mL flame-sealed ampule yields up to 2 liters after dilution. Use with EPA Method 1664 to measure HEM/SGT-HEM at 5–100 mg/L.

#### New Jersey EPH

The New Jersey EPH in Soil standard is designed for use with the NJ Extractable Petroleum Hydrocarbons Method.

#### **New Jersey EPH in Soil**

CRM Cat. #564 PT Cat. #464 E

QR Cat. #564QR

One flame-sealed ampule with 20 g soil containing EPH in the range of 300-3000 mg/kg.

B The NJ EPH in Soil PT studies open in April and October.

# Massachusetts Hydrocarbons in Water

All Massachusetts UST PT standards are designed for use with Massachusetts Volatile Petroleum Hydrocarbon or Extractable Petroleum Hydrocarbon Methods. The standards meet the requirements of all states that accredit for these methods including Massachusetts, North Carolina, and Washington when reporting the Massachusetts carbon ranges.

#### Massachusetts VPH in Water

CRM Cat. #566 PT Cat. #481 Q

QR Cat. #566QR

One 2 mL flame-sealed ampule yields in excess of 200 mL after dilution. Contains volatile petroleum hydrocarbon fuels (VPH) in the range 400–4000  $\mu g/L$ . Use with the Massachusetts Volatile Petroleum Hydrocarbon Method for multiple carbon ranges, BTEX compounds and MTBE.

#### **Massachusetts EPH in Water**

CRM Cat. #567

PT Cat. #482 Q

QR Cat. #567QR

One 2 mL flame-sealed ampule yields up to 2 liters after dilution. Contains extractable petroleum hydrocarbon fuels (EPH) in the range  $800\text{-}6000~\mu\text{g/L}.$  Use with the Massachusetts Extractable Petroleum Hydrocarbon Method for multiple carbon ranges and PAH compounds.

#### Massachusetts Hydrocarbons in Soil

#### Massachusetts VPH in Soil

CRM Cat. #568

Cat. #483

Q

QR Cat. #568OR

One flame-sealed ampule with 20 g soil with VPH fuels. Contains volatile petroleum hydrocarbon fuels (VPH) in the range 100–2000 mg/kg. Use with the Massachusetts Volatile Petroleum Hydrocarbon Method for multiple carbon ranges, BTEX compounds and MTBE.

#### Massachusetts EPH in Soil

CRM Cat. #569

Ca

Q

QR Cat. #569QR

One flame-sealed ampule with 20 g soil with EPH fuels. Contains extractable petroleum hydrocarbon fuels (EPH) in the range 300–3000 mg/kg. Use with the Massachusetts Extractable Petroleum Hydrocarbon Method for multiple carbon ranges and PAH compounds.

CRM - Certified Reference Material

PT - Proficiency Testing

QR - QuiK Response

RM - Reference Material

All Waters ERA UST PTs open quarterly (1) unless otherwise noted. Quarterly months are January, April, July, and October.

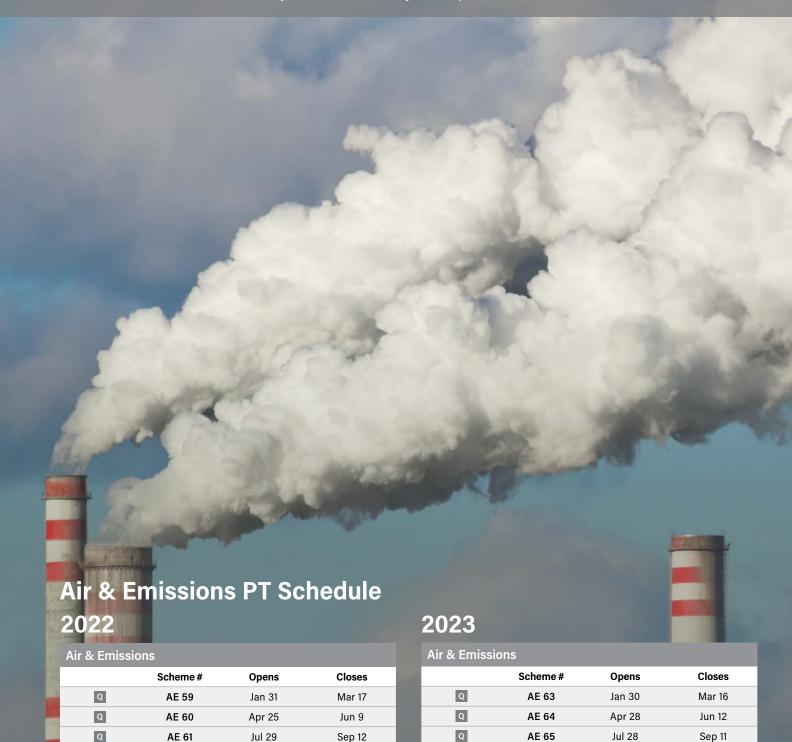
# WE FOCUS ON QUALITY AND SERVICE, SO YOU CAN FOCUS ON YOUR BUSINESS

#### **Unmatched Technical Expertise**

As your Partner in Quality, our goal is to help you maintain successful PT performance, solve routine analysis challenges, and improve corrective actions. Whether it's organic and/or inorganic chemistry, microbiology, analytical instrumentation or methods, our experts are ready to help you with:

- Method interpretations
- Prep and analytical questions
- Instrumentation troubleshooting
- Quality control issues
- Calibration issues

#### World-Class Customer Service


Our customer service team understands that you are faced with a myriad of requirements to maintain your laboratory accreditation. Each of our representatives has helped solve questions from customers with the same types of challenges. Your dedicated customer service representative has the experience and knowledge to help you through every step of the process.

For more information, contact our customer service team at 800.372.0122 / +1.303.431.8454. or email at info@eraqc.com.



# AIR & EMISSIONS

Matrices consisting of organic, inorganic, and particulate matter for testing emissions and ambient air. Standards are designed to meet regulations of the United States Environmental Protection Clean Air Act and may be used to satisfy PT requirements worldwide.



Q

**AE 66** 

Oct 27

Dec 11

AE 62

Oct 28

Dec 12

Q

**CRM:** A reference material characterized by a metrologically valid procedure for one or more specified properties, accompanied by a reference material certificate that provides the value of the specified property, its associated uncertainty, and a statement of metrological traceability.

A complete listing of ERA's CRMs can be found on our Scope of Accreditation for general requirements for competence of reference material producers available at www.eraqc.com/AboutERA/Accreditations.

**PT:** A Proficiency Test (PT) is an analysis of what is often referred to as a blind sample or a sample with unknown concentrations of analytes for the purpose of evaluating a laboratory's analytical performance.

**QR:** Similar to a Proficiency Test, a QuiK Response (QR) is a sample with unknown concentrations. However, unlike a scheduled PT, QR is on-demand and available at any time. Plus, your results are returned within two business days. QuiK Response can be used as a bilateral PT as referenced in the IUPAC/CITAC guide: Selection and use of PT schemes for a limited number of participants – chemical analytical labs.

**RM:** A material, sufficiently homogeneous and stable with respect to one or more specified properties, which has been established to be fit for its intended use in a measurement process.

#### Contents

| Description                                            | CRM/<br>RM | PT     | QR     | Page |
|--------------------------------------------------------|------------|--------|--------|------|
| Aldehydes and<br>Ketones on Sorbent                    | 1114       | 1014 Q | 1114QR | 55   |
| Ammonia in Impinger Solution                           | 1145       | 1045 Q | 1145QR | 57   |
| Chromium on Filter Paper                               | 1131       | 1031 Q | 1131QR | 56   |
| Fluoride in Impinger Solution                          | 1141       | 1041 Q | 1141QR | 57   |
| Hexavalent Chromium in<br>Impinger Solution            | 1132       | 1032 Q | 1132QR | 56   |
| Hydrogen Halides & Halogens in Impinger Solution       | 1140       | 1040 Q | 1140QR | 57   |
| Lead in Impinger Solution                              | 1130       | 1030 Q | 1130QR | 56   |
| Lead on Filter Paper                                   | 1129       | 1029 Q | 1129QR | 56   |
| Mercury in Impinger Solution                           | 1128       | 1028 Q | 1128QR | 56   |
| Mercury on Filter Paper                                | 1127       | 1027 Q | 1127QR | 56   |
| Metals on Filter Paper                                 | 1125       | 1025 Q | 1125QR | 56   |
| Metas in Impinger Solution                             | 1126       | 1026 Q | 1126QR | 56   |
| Nitrogen Oxide in<br>Impinger Solution                 | 1142       | 1042 Q | 1142QR | 57   |
| Organochlorine Pesticides on Polyurethane Foam         | 1111       | 1011 Q | 1111QR | 55   |
| PAHs on Polyurethane Foam                              | 1113       | 1013 Q | 1113QR | 55   |
| Particulate Matter in Impinger Solution                | 1151       | 1051 Q | 1151QR | 57   |
| Particulate Matter<br>on Filter Paper                  | 1150       | 1050 Q | 1150QR | 57   |
| PCBs on Polyurethane Foam                              | 1112       | 1012 Q | 1112QR | 55   |
| Semivolatiles on<br>Polyurethane Foam                  | 1110       | 1010 Q | 1110QR | 55   |
| Sulfur Dioxide in<br>Impinger Solution                 | 1143       | 1043 Q | 1143QR | 57   |
| Sulfuric Acid & Sulfur Dioxide in<br>Impinger Solution | 1144       | 1044 Q | 1144QR | 57   |
| Volatiles in Gas Cylinder                              | 1100       | 1000 Q | 1100QR | 54   |
| Volatiles on Sorbent                                   | 1101       | 1001 Q | 1101QR | 54   |

**Q** All Waters ERA Air & Emissions PTs open quarterly. Quarterly months are January, April, July, and October.

#### Volatiles

#### Volatiles in Gas Cylinder\*

RM\*\* Cat. #1100

Cat. #1000

Q

QR Cat. #1100QR

One pressurized gas cylinder containing 87 L of gas at 1500 psig (103 bar) for use with EPA methods TO-14, TO-15, or other applicable methods. Contains at least 10 analytes, randomly selected from the list below, at 2-50 ppbv (4-100 ppbv) for Total Xylenes.

| Acetone                        | 1,1-Dichloroethane             | Styrene                   |
|--------------------------------|--------------------------------|---------------------------|
| Benzene                        | 1,2-Dichloroethane             | 1,1,2,2-Tetrachloroethane |
| Benzy chloride                 | 1,1-Dichloroethylene           | Tetrachloroethylene       |
| Bromodichloromethane           | cis-1,2-Dichloroethylene       | Toluene                   |
| Bromoform                      | trans-1,2-Dichloroethylene     | Trichloroethene           |
| Bromomethane                   | 1,2-Dichloropropane            | 1,2,4-Trichlorobenzene    |
| 1.3-Butadiene                  | cis-1,3-Dichloropropylene      | 1,1,1-Trichloroethane     |
| 2-Butanone (MEK)               | trans-1,3-Dichloropropylene    | 1,1,2-Trichloroethane     |
|                                | 1,2-Dichlorotetrafluoroethane  | Trichlorofluoromethane    |
| Methyl tert-butyl ether (MTBE) | •                              |                           |
| Carbon disulfide               | (Freon 114)                    | (Freon 11)                |
| Carbon tetrachloride           | Ethyl acetate                  | Trichlorotrifluoromethane |
| Chlorobenzene                  | Ethylbenzene                   | (Freon 113)               |
| Chlorodibromomethane           | p-Ethyltoluene                 | 1,2,4-Trimethylbenzene    |
| Chloroethane                   | n-Heptane                      | 1,3,5-Trimethylbenzene    |
| Chloroform                     | Hexachlorobutadiene            | Vinyl bromide             |
| Chloromethane                  | n-Hexane                       | Vinyl chloride            |
| Cyclohexane                    | 2-Hexanone                     | Xylenes, total            |
| 1,2-Dibromoethane (EDB)        | Isopropyl alcohol              | m&p-Xylene                |
| 1,2-Dichlorobenzene            | Methylene chloride             | o-Xylene                  |
| 1,3-Dichlorobenzene            | Methyl methacrylate            |                           |
| 1,4-Dichlorobenzene            | 4-Methyl-2-pentanone (MIBK)    |                           |
| Dichlorodifluoromethane        | Methyl tert-butyl ether (MTBE) |                           |
| (Freon 12)                     | Propylene                      |                           |
| •                              | • •                            |                           |

<sup>\*</sup>Volatiles in Gas Cylinder ships as dangerous goods.

#### **Volatiles on Sorbent**

CRM Cat. #1101 PT Cat. #1001 Q

QR Cat. #1101QR

One 2 mL flame-sealed ampule for spiking client-specific sorbent. Use with EPA Methods TO-17, 0030, 0031, or other applicable methods. Contains at least 24 analytes, randomly selected from the list below, at 50–2000 ng/sample (200–3000 ng/sample for Total Xylenes) after preparation.

Acetone Acetonitrile Acrolein Acrylonitrile Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon disulfide Carbon tetrachloride Chlorobenzene Chlorodibromomethane Chloroethane 2-Chloroethyl vinyl ether Chloroform Chloromethane 2-Chlorotoluene 4-Chlorotoluene 1,3-Dichloropropane 2,2-Dichloropropane

1,1-Dichloropropene 1,2-Dibromo-3-chloropropane (DBCP) 1,2-Dibromoethane (EDB) Dibromomethane 1,2-Dichlorobenzene 1.3-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane (Freon 12) 1,1-Dichloroethane 1,2-Dichloroethane 1.1-Dichloroethene cis-1,2-Dichloroethene trans-1,2-Dichloroethene 1,2-Dichloropropane cis-1,3-Dichloropropene trans-1,3-Dichloropropene Ethylbenzene Hexachlorobutadiene Hexachloroethane 2-Hexanone Isopropylbenzene 4-Isopropyltoluene Methyl tert-butyl ether (MTBE)

Methylene chloride 4-Methyl-2-pentanone (MIBK) Naphthalene Nitrobenzene n-Propylbenzene Styrene 1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane Tetrachloroethene Toluene 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1.1.1-Trichloroethane 1,1,2-Trichloroethane Trichloroethlyene Trichlorofluoromethane 1,2,3-Trichloropropane 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Vinyl acetate Vinyl chloride Xylenes, total m&p-Xylene o-Xylene

<sup>\*\*</sup> Reference Material (RM)

#### Semivolatiles

#### Semivolatiles on Polyurethane Foam

CRM Cat. #1110

Cat. #1010

0

**OR** Cat. #1110QR

Two 2 mL flame-sealed ampules plus one polyurethane foam. Use with EPA Method 0010, or other applicable methods. Contains at least 42 analytes, randomly selected from the list below, at 10-225 µg/sample (200-1000 µg/sample for Benzidine) after preparation.

1.3-Dichlorobenzene Acenaphthene Acenaphthylene 1.4-Dichlorobenzene Aniline 3.3'-Dichlorobenzidine Diethyl phthalate Anthracene **Benzidine** Dimethyl phthalate Benzo(a)anthracene 2,4-Dinitrotoluene Benzo(b)fluoranthene 2.6-Dinitrotoluene Benzo(k)fluoranthene Di-n-octyl phthalate Benzo(a.h.i)pervlene Fluoranthene Benzo(a)pyrene Fluorene Benzyl alcohol Hexachlorobenzene 4-Bromophenyl phenyl ether Hexachlorobutadiene Butyl benzyl phthalate Hexachlorocyclopentadiene Carbazole Hexachloroethane 4-Chloroaniline Indeno(1,2,3-cd)pyrene Bis(2-chloroethoxy)methane Isophorone 2-Methylnaphthalene Bis(2-chloroethyl)ether Bis(2-ethylhexyl)phthalate Naphthalene 1-Chloronaphthalene 2-Nitroaniline 2-Chloronaphthalene 3-Nitroaniline 4-Chlorophenyl phenyl ether 4-Nitroaniline Chrysene Nitrobenzene Dibenz(a,h)anthracene N-Nitrosodiethylamine Dibenzofuran N-Nitrosodimethylamine Di-n-butyl phthalate

N-Nitroso-di-n-propylamine 2,2'-Oxybis(1-chloropropane) Pentachlorobenzene Phenanthrene Pyrene

Pyridine o-Toluidine 1,2,4,5-Tetrachlorobenzene 1.2.4-Trichlorobenzene

Benzoic Acid 4-Chloro-3-methylphenol 2-Chlorophenol 2,4-Dichlorophenol 2,6-Dichlorophenol 2,4-Dimethylphenol 2,4-Dinitrophenol 2-Methyl-4,6-dinitrophenol

2-Methylphenol (o-Cresol) 4-Methylphenol (p-Cresol) 2-Nitrophenol 4-Nitrophenol

Pentachlorophenol Phenol 2,3,4,6-Tetrachlorophenol 2.4.5-Trichlorophenol

2,4,6-Trichlorophenol

Organochlorine Pesticides on Polyurethane Foam

N-Nitrosodiphenylamine

CRM Cat. #1111

1,2-Dichlorobenzene

Cat. #1011

(NDMA)

Q

OR Cat. #1111QR

One 2 mL flame-sealed ampule plus one polyurethane foam. Use with EPA Methods TO-04A, TO-10A, or other applicable methods. Contains at least 16 analytes, randomly selected from the list below, at 1-20 µg/sample after preparation.

Aldrin 4.4'-DDD **Endrin** alpha-BHC 4,4'-DDE Endrin aldehyde beta-BHC 4.4'-DDT Endrin ketone delta-BHC Dieldrin Heptachlor Endosulfan I Heptachlor epoxide (beta) gamma-BHC (Lindane)

alpha-Chlordane Endosulfan II gamma-Chlordane Endosulfan sulfate PCBs on Polyurethane Foam

**CRM** Cat. #1112

Cat. #1012

Q

**OR** Cat. #1112QR

Aroclor 1260

One 2 mL flame-sealed ampule plus one polyurethane foam. Use with EPA Methods TO-04A, TO-10A, or other applicable methods. Contains one aroclor, randomly selected from the list below, at 2-10 µg/sample after preparation.

Aroclor 1016 Aroclor 1242 Aroclor 1221 Aroclor 1248

PAHs on Polyurethane Foam

**CRM** Cat. #1113

Aroclor 1232

Cat. #1013

Aroclor 1254

Q

QR Cat. #1113OR

One 2 mL flame-sealed ampule plus one polyurethane foam. Use with EPA Method TO-13A, or other applicable methods. Contains at least 13 analytes, randomly selected from the list below, at 10-200 µg/sample after preparation.

Acenaphthene Benzo(g,h,i)perylene Indeno(1.2.3-cd)pyrene Acenaphthylene Benzo(a)pyrene 1-Methylnaphthalene 2-Methylnaphthalene Anthracene Chrysene Benzo(a)anthracene Dibenz(a,h)anthracene Naphthalene Benzo(b)fluoranthene Fluoranthene Phenanthrene Benzo(k)fluoranthene Fluorene Pyrene

#### Aldehydes & Ketones on Sorbent

CRM Cat. #1114

Cat. #1014

Q

QR Cat. #1114QR

One 2 mL flame-sealed ampule to be spiked onto sorbent. Use with EPA Method TO-11A, or other applicable methods. Contains at least four analytes, randomly selected from the list below, at 0.5-10 µg/sample after preparation.

Acetaldehyde Acetone Benzaldehyde 2-Butanone (MEK) Butyraldehyde (Butanal)

Crotonaldehyde 2,5-Dimethylbenzaldehyde Formaldehyde Hexaldehvde (Hexanal) Isovaleraldehyde

Propionaldehyde (Propanal) o-Tolualdehyde m-Tolualdehyde n-Tolualdehyde Valeraldehyde (Pentanal)

CRM - Certified Reference Material

PT - Proficiency Testing OR - QuiK Response RM - Reference Material

Q All Waters ERA Air & Emissions PTs open quarterly. Quarterly months are January, April, July, and October.

**Brian Stringer** Principal Proficiency Testing **Technical Specialist** 



Methoxychlor



**Debby Updyke** Senior Proficiency Testing Technical Specialist

#### Metals

#### Metals on Filter Paper

CRM Cat. #1125 PT Cat. #1025 Q

QR Cat. #1125QR

One filter paper sample packaged in a 50 mm polystyrene petri dish containing a single 47 mm tissue quartz filter ready for use with EPA Method 29 or other applicable methods.

| Antimony         | 25-250 μg/filter |
|------------------|------------------|
| Arsenic          | 20-250 µg/filter |
| Barium           | 20-250 µg/filter |
| Beryllium        | 10-250 µg/filter |
| Cadmium          | 10-250 µg/filter |
| Chromium         | 15-250 µg/filter |
| CODAIL           | IU-230 uu/IIIlei |
| Copper           | 10-250 μg/filter |
| Copper           | 20-350 µg/filter |
| Manganese        | 10-250 µg/filter |
| NickelPhosphorus | 20-250 µg/filter |
| Phosphorus       | 10-250 µg/filter |
| Selenium         | 20-250 µg/filter |
| Silver           |                  |
| Thallium         | 30-250 µg/filter |
| Zinc             | 20-250 μg/filter |
|                  |                  |

#### **Metals in Impinger Solution**

CRM Cat. #1126

PT Cat. #1026 Q

QR Cat. #1126QR

One impinger solution sample packaged in a 15 mL screw-top vial containing approximately 14 mL of standard concentrate for use with EPA Method 29, or other applicable methods.

| Antimony0.25–20 μg/m                                                                                                                                                                                                                                                                              | ıL |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Arsenic0.2–20 μg/m                                                                                                                                                                                                                                                                                | ıL |
| Barium0.15-25 μg/m                                                                                                                                                                                                                                                                                | ıL |
| Beryllium0.05-20 μg/m                                                                                                                                                                                                                                                                             | ıL |
| Cadmium0.1–20 μg/m                                                                                                                                                                                                                                                                                | ıL |
| Chromium0.2–20 μg/m                                                                                                                                                                                                                                                                               | ıL |
| Cobalt0.1–25 μg/m                                                                                                                                                                                                                                                                                 | ıL |
| Copper0.2-20 µg/m                                                                                                                                                                                                                                                                                 | ıL |
| Lead0.2–20 μg/m                                                                                                                                                                                                                                                                                   | ıL |
| Manganese0.1–20 μg/m                                                                                                                                                                                                                                                                              | ıL |
| Nickel0.15-30 μg/m                                                                                                                                                                                                                                                                                | ıL |
| Phosphorus0.15-25 μg/m                                                                                                                                                                                                                                                                            | ıL |
| Selenium0.15-25 μg/m                                                                                                                                                                                                                                                                              | ıL |
| Silver0.5–20 μg/m                                                                                                                                                                                                                                                                                 | ıL |
| Thallium0.15–25 μg/m                                                                                                                                                                                                                                                                              | ıL |
| Antimony 0.25-20 µg/m Arsenic 0.2-20 µg/m Barium 0.15-25 µg/m Beryllium 0.05-20 µg/m Cadmium 0.1-20 µg/m Chromium 0.2-20 µg/m Cobalt 0.1-25 µg/m Copper 0.2-20 µg/m Copper 0.2-20 µg/m Manganese 0.2-20 µg/m Nickel 0.15-30 µg/m Phosphorus 0.15-25 µg/m Selenium 0.15-25 µg/m Silver 0.5-20 µg/m | ıL |

#### **Mercury on Filter Paper**

CRM Cat. #1127 PT Cat. #1027 Q

**QR** Cat. #1127OR

One 2 mL flame-sealed ampule containing approximately 2 mL of standard concentrate and a 50 mm polystyrene petri dish containing a single 47 mm glass fiber filter. Sample is ready for use with EPA Method 29, or other applicable methods.

Mercury.....1-75 μg/filter

#### **Mercury in Impinger Solution**

CRM Cat. #1128

PT Cat. #1028 Q

QR Cat. #1128QR

One impinger solution sample packaged in a 15 mL screw-top vial containing approximately 14 mL of standard concentrate for use with EPA Methods 29, 101a, or other applicable methods.

#### Lead on Filter Paper

CRM Cat. #1129 PT Cat. #1029 Q

QR Cat. #1129QR

One filter paper sample packaged in a 50 mm polystyrene petri dish containing a single 47 mm tissue quartz filter spiked with lead ready-for-use with EPA Method 12 or other applicable methods.

Lead......20-350 µg/filter

#### **Lead in Impinger Solution**

CRM Cat. #1130

PT Cat. #1030 Q

QR Cat. #1130QR

One impinger solution sample packaged in a 15 mL screw top vial containing approximately 14 mL of standard concentrate for use with EPA Method 12, or other applicable methods.

Lead......0.2-120 μg/mL

#### **Chromium on Filter Paper**

CRM Cat. #1131

PT Cat. #1031 Q

**QR** Cat. #1131QR

One filter paper sample packaged in a 50 mm polystyrene petri dish containing a single 47 mm fiber film filter for use with CARB Method 425, or other applicable methods.

Total chromium 1–20 µg/filter
Hexavalent chromium 1–20 µg/filter

#### **Hexavalent Chromium in Impinger Solution**

CRM Cat. #1132

Cat. #1032

Q

QR Cat. #1132QR

One impinger solution sample packaged in a 15 mL screw top vial containing approximately 14 mL of standard concentrate for use with EPA Method 0061/7199, or other applicable methods.

Hexavalent chromium......45-880 µg/l

#### Inorganics

#### Hydrogen Halides & Halogens in Impinger Solution

CRM Cat. #1140

Cat. #1040

Q

**QR** Cat. #1140QR

Two impinger solution samples packaged in 15 mL screw-top vials containing approximately 14 mL of standard concentrate for use with EPA Methods 26, 26a, or other applicable methods.

| Total halides     | 15-1500 mg/L |
|-------------------|--------------|
| Total halogens    | 10-200 mg/L  |
| Hydrogen chloride | 5-500 mg/L   |
| Hydrogen fluoride | 5-500 mg/L   |
| Hydrogen bromide  | 5-500 mg/L   |
| Bromine           | 5-100 mg/L   |
| Chlorine          | 5-100 mg/L   |

#### Fluoride in Impinger Solution

CRM Cat. #1141

PT Cat. #1041 Q

QR Cat. #1141QR

One impinger solution sample packaged in a 15 mL screw-top vial containing approximately 14 mL of standard concentrate for use with EPA Methods 13a, 13b, 14, or other applicable methods.

Fluoride......1-50 mg/dscm

#### Nitrogen Oxide in Impinger Solution

CRM Cat. #1142 PT Cat. #1042 Q

QR Cat. #1142QR

One impinger solution sample packaged in a 15 mL screw-top vial containing approximately 14 mL of standard concentrate for use with EPA Method 7, or other applicable methods.

Oxides of nitrogen (NOx)......100-2000 mg/dscm

#### Sulfur Dioxide in Impinger Solution

CRM Cat. #1143

Cat. #1043

Q

QR Cat. #1143QR

One impinger solution sample packaged in a 15 mL screw-top vial containing approximately 14 mL of standard concentrate for use with EPA Method 6 and Method 8, or other applicable methods.

Sulfur dioxide ......50-2000 mg/dscm

#### Sulfuric Acid & Sulfur Dioxide in Impinger Solution

CRM Cat. #1144

Cat. #1044

Q

QR Cat. #1144QR

One impinger solution sample packaged in a 15 mL screw top vial containing approximately 14 mL of standard concentrate for use with EPA Method 8, or other applicable methods.

Sulfuric acid......5-150 mg/dscm

#### **Ammonia in Impinger Solution**

CRM Cat. #1145 PT Cat. #1045 Q

QR Cat. #1145QR

One impinger solution sample packaged in a 15 mL screw-top vial containing approximately 14 mL of standard concentrate for use with EPA CTM 027, or other applicable methods.

Ammonium......0.1-10 mg/L

#### **Particulate Matter on Filter Paper**

CRM Cat. #1150

PT Cat. #1050 Q

QR Cat. #1150QR

One filter paper sample packaged in a 50 mm polystyrene petri dish containing a single 47 mm tissue quartz filter ready for use with EPA Methods 5, 5A, 5B, 5D, 5F, or other applicable methods.

Particulate matter......50-600 mg/filter

#### Particulate Matter in Impinger Solution

CRM Cat. #1151

Cat. #1051

Q

QR Cat. #1151QR

One impinger solution sample packaged in a 250 mL polyethylene bottle containing approximately 250 mL of standard ready for use with EPA Methods 5, 5A, 5B, 5D, 5F, or other applicable methods.

Particulate matter......140-675 mg/L

CRM - Certified Reference Material

PT - Proficiency Testing

QR - QuiK Response

All Waters ERA Air & Emissions PTs open quarterly. Quarterly months are January, April, July, and October.



Learn more about Air & Emissions products

# RADIOCHEMISTRY

Matrices in soil, vegetation, air filters, and water for monitoring of radiochemicals.



| Radiochemistry |          |        |        |  |
|----------------|----------|--------|--------|--|
|                | Scheme # | Opens  | Closes |  |
| Q              | RAD 128  | Jan 10 | Feb 24 |  |
| Q              | RAD 129  | Apr 4  | May 19 |  |
| Q              | RAD 130  | Jul 11 | Aug 25 |  |
| Q              | RAD 131  | Oct 7  | Nov 21 |  |

2023

| Radiochemistry |          |        |        |  |
|----------------|----------|--------|--------|--|
|                | Scheme # | Opens  | Closes |  |
| Q              | RAD 132  | Jan 9  | Feb 23 |  |
| Q              | RAD 133  | Apr 10 | May 25 |  |
| Q              | RAD 134  | Jul 10 | Aug 24 |  |
| Q              | RAD 135  | Oct 6  | Nov 20 |  |

#### **MRAD PT Schedule**

2022

| MRAD    |                               |         |
|---------|-------------------------------|---------|
| Scheme# | Opens                         | Closes  |
| MRAD 36 | Mar 21                        | May 20  |
| MRAD 37 | Sep 19                        | Nov 18  |
| 2       | schemes per year - open for 6 | 60 days |
| 2       | schemes per year – open for 6 | 60 days |

2023

| MRAD    |                                 |         |
|---------|---------------------------------|---------|
| Scheme# | Opens                           | Closes  |
| MRAD 38 | Mar 20                          | May 19  |
| MRAD 39 | Sep 18                          | Nov 17  |
|         | 2 schemes per year - open for 6 | 60 days |

**CRM:** A reference material characterized by a metrologically valid procedure for one or more specified properties, accompanied by a reference material certificate that provides the value of the specified property, its associated uncertainty, and a statement of metrological traceability.

A complete listing of ERA's CRMs can be found on our Scope of Accreditation for general requirements for competence of reference material producers available at www.eraqc.com/AboutERA/Accreditations.

**PT:** A Proficiency Test (PT) is an analysis of what is often referred to as a blind sample or a sample with unknown concentrations of analytes for the purpose of evaluating a laboratory's analytical performance.

**QR:** Similar to a Proficiency Test, a QuiK Response (QR) is a sample with unknown concentrations. However, unlike a scheduled PT, QR is on-demand and available at any time. Plus, your results are returned within two business days. QuiK Response can be used as a bilateral PT as referenced in the IUPAC/CITAC guide: Selection and use of PT schemes for a limited number of participants – chemical analytical labs.

**RM:** A material, sufficiently homogeneous and stable with respect to one or more specified properties, which has been established to be fit for its intended use in a measurement process.

#### Contents

| Description                                                   | CRM/<br>RM | PT    | QR    | Page |
|---------------------------------------------------------------|------------|-------|-------|------|
| Air Filter Gross Alpha/Beta                                   | 607        | 801 💌 | 607QR | 62   |
| Air Filter Radionuclides                                      | 606        | 800 💌 | 606QR | 62   |
| Gamma Emitters                                                | 758        | 808 Q | 758QR | 60   |
| Gross Alpha/Beta                                              | 759        | 809 Q | 759QR | 60   |
| lodine-131                                                    | 750        | 810 Q | 750QR | 60   |
| Naturals                                                      | 751        | 811 Q | 751QR | 60   |
| Radchem Lab Control &<br>Matrix Spiking Solutions<br>(LCS/MS) |            |       |       | 61   |
| Soil Radionuclides                                            | 608        | 802 * | 608QR | 62   |
| Strontium-89/90                                               | 757        | 807 Q | 757QR | 60   |
| Tritium                                                       | 752        | 812 Q | 752QR | 60   |
| Vegetation Radionuclides                                      | 609        | 803 🗱 | 609QR | 62   |
| Water Gross Alpha/Beta                                        | 615        | 805 💌 | 615QR | 63   |
| Water Radionuclides                                           | 617        | 804 💌 | 617QR | 63   |
| Water Tritium                                                 | 616        | 806 🛎 | 616QR | 63   |

All Waters ERA WS Radchem PTs open quarterly. Quarterly months are January, April, July, and October.

<sup>\*</sup> All Waters ERA MRAD PTs open in March and September.

#### WS Radchem

All Radchem standards are provided as convenient, easy-to-prepare concentrates except for tritium, which is provided as a whole-volume sample.

#### **Gamma Emitters**

CRM PT QR Cat. #758 Cat. #808

One 12 mL screw-top vial yields up to 2 liters after dilution.

| Barium-133 | 10-100 pCi/L |
|------------|--------------|
| Cesium-134 | 10-100 pCi/L |
| Cesium-137 | 20-240 pCi/L |
| Cobalt-60  | 10-120 pCi/L |
| Zinc-65    | 30-360 pCi/L |

#### **Gross Alpha/Beta**

CRM PT QR Cat. #759 Cat. #809 Cat. #759QR

One 12 mL screw-top vial yields up to 1 liter after dilution.

#### **Naturals**

| CRM       | PT<br>Cat. #811 | Q | QR<br>Cat #7510P |
|-----------|-----------------|---|------------------|
| Cat. #751 | Cat. #811       |   | Cat. #751QR      |

One 12 mL screw-top vial yields up to 8 liters after dilution.

| Radium-226         | 1–20 pCi/L |
|--------------------|------------|
| Radium-228         | 2-20 pCi/L |
| Uranium (Nat)      | 2-70 pCi/L |
| Uranium (Nat) mass | 3-104 μg/L |

#### **Tritium**

| CRM       | <b>PT</b> | Q | <mark>QR</mark> |
|-----------|-----------|---|-----------------|
| Cat. #752 | Cat. #812 |   | Cat. #752QR     |

One 250 mL whole-volume bottle is ready to analyze as received. Includes tritium at 1000–24000 pCi/L.

#### lodine-131

| CRM       | PT        |   | QR          |
|-----------|-----------|---|-------------|
| Cat. #750 | Cat. #810 | Q | Cat. #750QR |

One 12 mL screw-top vial yields up to 2 liters after dilution. Contains iodine-131 within the range 3–30 pCi/L. Due to short half-life, CRMs, PTs, and QRs are available only during January, April, July, and October.

#### Strontium-89/90

| CRM       | PT        |   | QR          |
|-----------|-----------|---|-------------|
| Cat. #757 | Cat. #807 | Q | Cat. #757QR |

One 12 mL screw-top vial yields up to 2 liters after dilution.

| Strontium-89 | 10-70 pCi/L |
|--------------|-------------|
| Strontium-90 | 3-45 pCi/L  |



**Learn more about Radiochemistry products** 





CRM – Certified Reference Material PT – Proficiency Testing

QR - QuiK Response

All Waters ERA WS Radchem PTs open quarterly. Quarterly months are January, April, July, and October.

#### Radchem Lab Control & Matrix Spiking (LCS/MS)

Radiochemistry LCS/MS standards are prepared according to your specifications at activity levels that enable you to directly fortify your batch laboratory control and matrix spike QC samples. These single-use spiking standards are verified, conveniently packaged in 2–20 mL glass vials, and very economical.

#### The direct benefits:

- Easy-to-use LCS/MS spiking standards are ready-to-use no dilutions are required.
- Reliable and consistent Eliminate the possibility of errors from the contamination or repeated multiple dilutions of your primary stock standards.
- Independently verified LCS/MS standards are analytically verified and traced to NIST SRMs where available.
- Save money You no longer need to pay for microcuries of activity when you only need picocuries.
   You also eliminate the cost of activity loss for short-lived isotopes.
- Reduce analytical cost You no longer need to spend valuable instrument time re-verifying standard stability.
   Order what you expect to use on a quarterly or annual basis we'll do the verification.

#### The process is easy:

- 1. Select from any of the following carrier-free, single radionuclide standards.
- 2. Choose an activity up to the maximum listed in the table below.
- 3. Choose a convenient volume: 2 to 20 mL glass vials available.
- 4. For labs that analyze samples with more elevated activities, call for standard availability and pricing.

#### **Single Radionuclide Spiking Standards**

| Cat. # | Radionuclide         | Maximum Activity/Vial |
|--------|----------------------|-----------------------|
| AM241  | Americium-241        | 40 pCi                |
| BA133  | Barium-133           | 400 pCi               |
| CS134  | Cesium-134           | 200 pCi               |
| CS137  | Cesium-137           | 400 pCi               |
| CO60   | Cobalt-60            | 200 pCi               |
| GAB    | Gross alpha/beta     | 30/40 pCi             |
| GA     | Gross alpha (Th-230) | 30 pCi                |
| GB     | Gross beta (Cs-137)  | 40 pCi                |
| PU238  | Plutonium-238        | 40 pCi                |
| PU239  | Plutonium-239        | 40 pCi                |
| RA226  | Radium-226           | 20 pCi                |
| RA228  | Radium-228           | Call                  |
| SR89   | Strontium-89         | 200 pCi               |
| SR90   | Strontium-90         | 40 pCi                |
| Н3     | Tritium              | 2000 pCi              |
| UNAT   | Uranium, natural     | 40 pCi                |
| ZN65   | Zinc-65              | 600 pCi               |

#### **MRAD Solids**

#### **Soil Radionuclides**

RM Cat. #608 PT Cat. #802



QR Cat. #608QR

One 500  $\rm cc$  standard includes the alpha, beta, and gamma emitting radionuclides listed below.

| Actinium-228  | 500-5000 pCi/kg    |
|---------------|--------------------|
| Americium-241 | 50-2000 pCi/kg     |
| Bismuth-212   | 500-5000 pCi/kg    |
| Bismuth-214   | 500-5000 pCi/kg    |
| Cesium-134    | 1000-10,000 pCi/kg |
| Cesium-137    | 1000-10,000 pCi/kg |
| Cobalt-60     | 1000-10,000 pCi/kg |
| Lead-212      | 500-5000 pCi/kg    |
| Lead-214      | 500-5000 pCi/kg    |
| Plutonium-238 | 50-2000 pCi/kg     |
| Plutonium-239 | 50-2000 pCi/kg     |
| Potassium-40  | 5000-50,000 pCi/kg |
| Strontium-90  | 500-10,000 pCi/kg  |
| Thorium-234   | 500-5000 pCi/kg    |
| Uranium-234   | 500-5000 pCi/kg    |
| Uranium-238   | 500-5000 pCi/kg    |
| Uranium (Nat) | 1000-10,000 pCi/kg |
| Actinium-228  | 1500–15,000 μg/kg  |
| Zinc-65       | 1000–10,00 pCi/kg  |
|               |                    |

#### **Vegetation Radionuclides**

RM Cat. #609

PT Cat. #803



QR Cat. #609QR

One 500 cc standard includes the alpha, beta, and gamma emitting radionuclides listed below

| Americium-241      |                   |
|--------------------|-------------------|
| Cesium-134         |                   |
| Cesium-137         | 300-3000 pCi/kg   |
| Cobalt-60          | 300-3000 pCi/kg   |
| Curium-244         |                   |
| Plutonium-238      | 50-5000 pCi/kg    |
| Plutonium-239      | 50-5000 pCi/kg    |
| Potassium-40       |                   |
| Strontium-90       |                   |
| Uranium-234        | 50-5000 pCi/kg    |
| Uranium-238        |                   |
| Uranium (Nat)      | 100-10,000 pCi/kg |
| Uranium (Nat) mass |                   |
| Zinc-65            | 300-3000 pCi/kg   |
|                    |                   |

#### MRAD Air Filter

#### **Air Filter Radionuclides**

RM Cat. #606 PT Cat. #800



QR Cat. #606QR

One 47 mm diameter glass fiber filter contains the alpha, beta, and gamma emitting radionuclides listed below.

| Americium-241      | 2-80 pCi/filter    |
|--------------------|--------------------|
| Cesium-134         | 50-1500 pCi/filter |
| Cesium-137         | 50-1500 pCi/filter |
| Cobalt-60          | 50-1500 pCi/filter |
| Iron-55            | 50-1500 pCi/filter |
| Plutonium-238      | 2-80 pCi/filter    |
| Plutonium-239      | 2-80 pCi/filter    |
| Strontium-90       |                    |
| Uranium-234        | 2-80 pCi/filter    |
| Uranium-238        | 2-80 pCi/filter    |
| Uranium (Nat)      | 4-160 pCi/filter   |
| Uranium (Nat) mass | 6-240 µg/filter    |
| Zinc-65            | 50-1500 pCi/filter |

#### Air Filter Gross Alpha/Beta

RM Cat. #607

P1 Cat. #801



QR Cat. #607QR

One acrylic treated 47 mm diameter glass fiber filter contains the radionuclides listed below.

| Gross alpha as thorium-230 | 5-100 pCi/filter |
|----------------------------|------------------|
| Gross beta as cesium-137   | 5-100 pCi/filter |





**Leo Muñoz** Shipping Team Lead

#### **MRAD** Water

#### **Water Radionuclides**

RM Cat. #617 PT Cat. #804



QR Cat. #617QR

One 12 mL screw-top vial yields up to 2 liters after dilution. Includes the alpha, beta, and gamma emitting radionuclides listed below.

| Americium-241      | 10_200 pCi/l   |
|--------------------|----------------|
|                    | •              |
| Cesium-134         | 100-3000 pCi/L |
| Cesium-137         |                |
| Cobalt-60          | 100-3000 pCi/L |
| Iron-55            | 100-3000 pCi/L |
| Plutonium-238      | 10-200 pCi/L   |
| Plutonium-239      | 10-200 pCi/L   |
| Strontium-90       | 50-1000 pCi/L  |
| Uranium-234        | 10-200 pCi/L   |
| Uranium-238        | 10-200 pCi/L   |
| Uranium (Nat)      | 20-400 pCi/L   |
| Uranium (Nat) mass | 30-600 μg/L    |
| Zinc-65            | 100-3000 pCi/L |
|                    |                |

#### Water Gross Alpha/Beta

RM Cat. #615 PT Cat. #805



QR Cat. #615QR

One 12 mL screw-top vial yields up to 2 liters after dilution. Includes the radionuclides below.

| Gross alpha as thorium-23010-200 pC | i/L |
|-------------------------------------|-----|
| Gross beta as cesium-13710-200 pC   | i/L |

#### **Water Tritium**

RM Cat. #616 PT Cat. #806 \*

QR Cat. #616QR

One 125 mL whole-volume bottle is ready to analyze as received.

Tritium .......3000-30,000 pCi/L



**CRM** - Certified Reference Material

PT - Proficiency Testing

QR - QuiK Response

\* All Waters ERA MRAD PTs open in March and September.

# LOW-LEVEL CRMs

Synthetic drinking and wastewater matrices with low concentrations of analytes for testing water supply, drinking water, ground water, water pollution, or wastewater.

Save time diluting your standards or spending numerous hours producing them yourself with our low-level Certified Reference Materials (CRMs).

Our line of low-level CRMs are optimal for:

- Method development and validation
- System checks
- Evaluating limits of quantitation
- Minimum detection limit studies
- Detection verification
- Many other uses

#### Contents

**CRM:** A reference material characterized by a metrologically valid procedure for one or more specified properties, accompanied by a reference material certificate that provides the value of the specified property, its associated uncertainty, and a statement of metrological traceability.

A complete listing of ERA's CRMs can be found on our Scope of Accreditation for general requirements for competence of reference material producers available at www.eraqc.com/AboutERA/Accreditations.

**RM:** A material, sufficiently homogeneous and stable with respect to one or more specified properties, which has been established to be fit for its intended use in a measurement process.

| Description                     | CRM  | Page |
|---------------------------------|------|------|
| Chlorine                        | 1358 | 66   |
| Color                           | 1353 | 66   |
| Common Inorganics               | 1249 | 66   |
| Common Inorganics in Hard Water | 1346 | 66   |
| Common Inorganics in Soft Water | 1347 | 66   |
| Complex Nutrients in Hard Water | 1241 | 68   |
| Cyanide                         | 1345 | 66   |
| Demand                          | 1354 | 66   |
| Demand                          | 1242 | 66   |
| Hexavalent Chromium             | 1248 | 67   |
| High Solids                     | 1355 | 67   |
| Mercury                         | 1341 | 67   |
| Metals                          | 1244 | 67   |
| Simple Nutrients                | 1240 | 68   |
| Simple Nutrients in Hard Water  | 1348 | 68   |
| Simple Nutrients in Soft Water  | 1349 | 68   |
| Solids Concentrate              | 1243 | 67   |
| Volatiles                       | 1370 | 68   |
|                                 |      |      |

#### Inorganics

#### Chlorine

#### **CRM** Cat. #1358

One 2 mL flame-sealed ampule spiking concentrate and one 24 mL screw-cap vial matrix concentrate yields up to 2 liters of sample.

| Total chlorine | 75-500 μg/L |
|----------------|-------------|
| Free chlorine  | 75-500 μg/L |

#### Color

#### **CRM** Cat. #1353

One 125 mL whole-volume bottle sample is ready to be analyzed.

Color.....5-25 pc units

#### **Common Inorganics**

#### **CRM** Cat. #1249

One liter poly bottle whole-volume sample is ready to be analyzed.

| Alkalinity20-120 mg/L             |
|-----------------------------------|
| Calcium2-50 mg/L                  |
| Chloride25-500 mg/L               |
| Conductivity80-1,000 µmhos/cm     |
| Fluoride                          |
| Magnesium1–25 mg/L                |
| oH5-10 units                      |
| Potassium2-50 mg/L                |
| Sodium5-100 mg/L                  |
| Sulfate2-50 mg/L                  |
| Fotal dissolved solids60-750 mg/L |
| Fotal hardness9-250 mg/L          |

#### **Common Inorganics in Hard Water**

#### **CRM** Cat. #1346

One liter poly bottle whole-volume sample is ready to be analyzed.

| Alkalinity             | 20–100 mg/L       |
|------------------------|-------------------|
| Calcium                | 10–100 mg/L       |
| Chloride               | 20-250 mg/L       |
| Conductivity           | 130-1400 µmhos/cm |
| Fluoride               | 0.2-2 mg/L        |
| Magnesium              | 2–10 mg/L         |
| pH                     | 5-10 units        |
| Potassium              | 2-25 mg/L         |
| Sodium                 | 20-250 mg/L       |
| Sulfate                | 20-250 mg/L       |
| Total dissolved solids | 100-1000 mg/L     |
| Total hardness         | 30-300 mg/L       |

#### **Common Inorganics in Soft Water**

#### **CRM** Cat. #1347

A 1 liter poly bottle whole-volume sample is ready to be analyzed.

| Alkalinity             | 20-100 mg/L     |
|------------------------|-----------------|
| Calcium                | 2-50 mg/L       |
| Chloride               | 5-50 mg/L       |
| Conductivity           | 25-300 µmhos/cm |
| Fluoride               | 0.2–2 mg/L      |
| Magnesium              | 0.5-5 mg/L      |
| pH                     | 5-10 units      |
| Potassium              |                 |
| Sodium                 | 5-50 mg/L       |
| Sulfate                | 5-50 mg/L       |
| Total dissolved solids | 20-200 mg/L     |
| Total hardness         | 5-75 mg/L       |
|                        |                 |

#### Cyanide

#### **CRM** Cat. #1345

One 15 mL screw-cap vial yields up to 2 liters of sample.

| Free cyanide  | 5-100 µg/L |
|---------------|------------|
| Total cyanide | 5-100 µg/L |

#### **Demand**

#### **CRM** Cat. #1354

One 15 mL screw-cap vial yields up to 2 liters of sample.

| 5-day BOD | 2-25 mg/L |
|-----------|-----------|
| COD       | 2-25 mg/L |
| DOC       | 1-10 mg/L |
| TOC       | 1-10 mg/L |

#### **CRM** Cat. #1242

One 15 mL screw-cap vial spiking concentrate yields up to 2 liters of sample.

| 5-day BOD | 5-75 mg/L   |
|-----------|-------------|
| COD       | 10–150 mg/L |
| DOC       | 2-40 mg/L   |
| TOC       | 2-40 mg/l   |



**Stanley Dunlavy** EH & S Engineer

#### Inorganics (continued)

#### **High Solids**

**CRM** Cat. #1355

One 24 mL screw-cap vial with a powder concentrate yields 1 liter of solution.

#### **Solids Concentrate**

**CRM** Cat. #1243

One 24 mL screw-cap vial concentrate yields up to 1 liter of sample.

#### Metals

#### **Hexavalent Chromium**

**CRM** Cat. #1248

One 15 mL screw-cap vial spiking concentrate and one 24 mL screw-cap vial matrix concentrate yields up to 2 liters of sample.

Hexavalent chromium......5-100 µg/L

#### Mercury

**CRM** Cat. #1341

One 15 mL screw-cap vial spiking concentrate and one 24 mL screw-cap vial matrix concentrate yields up to 2 liters of sample.

#### Metals (continued)

#### Metals

#### **CRM** Cat. #1244

One 15 mL screw-cap vial spiking concentrate and one 24 mL screw-cap vial matrix concentrate yields up to 2 liters of sample.

| Aluminum200-400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 μg/L  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Antimony95-90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | /0 μg/L |
| Arsenic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | /0 μg/L |
| Barium100-250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | /0 μg/L |
| Beryllium8-90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | /0 μg/L |
| Boron800-200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | /0 μg/L |
| Cadmium8-75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | i0 μg/L |
| Chromium, total17-100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 00 μg/L |
| Cobalt28-100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 00 μg/L |
| Copper40-90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | /0 μg/L |
| Iron200-400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | /0 μg/L |
| Lead70-300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | /0 μg/L |
| Manganese70-400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | /0 μg/L |
| Molybdenum60-60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | /0 μg/L |
| Nickel80-300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | /0 μg/L |
| Selenium90-200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | /0 μg/L |
| Silver26-60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | /0 μg/L |
| Strontium30-30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | /0 μg/L |
| Thallium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 00 μg/L |
| Vanadium55-200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 00 μg/L |
| Aluminum       200-400         Antimony       95-90         Arsenic       70-90         Barium       100-250         Beryllium       8-90         Boron       800-200         Cadmium       17-100         Chromium, total       17-100         Copper       40-90         Iron       200-400         Lead       70-300         Manganese       70-400         Molybdenum       60-60         Nickel       80-300         Selenium       90-200         Silver       26-60         Strontium       30-30         Thallium       60-90         Vanadium       55-200         Zinc       100-200 | 00 μg/L |



#### **Nutrients**

#### **Complex Nutrients in Hard Water**

#### **CRM** Cat. #1241

One 15 mL screw-cap vial spiking concentrate yields up to 2 liters of sample.

| Total Kjeldahl nitrogen0.5- | 5 mg/L |
|-----------------------------|--------|
| Total nitrogen1-2           | 0 mg/L |
| Total phosphorus0.5-        | 5 mg/L |

#### **Simple Nutrients**

#### **CRM** Cat. #1240

Two 15 mL screw-cap vials yields up to 2 liters of sample.

| Ammonia (N)                     | 1–20 mg/L   |
|---------------------------------|-------------|
| Nitrate (NO <sub>3</sub> )      | 0.5-10 mg/L |
| Nitrite (NO <sub>2</sub> )      | 0.5-5 mg/L  |
| Total oxidised nitrogen         | 1-15 mg/L   |
| Soluble reactive phosphorus (P) | 0.5-5 ma/L  |

#### **Simple Nutrients in Hard Water**

#### **CRM** Cat. #1348

Two 15 mL screw-cap vial spiking concentrates and one 24 mL screw-cap vial matrix concentrate yields up to 2 liters of sample.

| Ammonium (NH <sub>4</sub> )     | 0.1–1 mg/L |
|---------------------------------|------------|
| Nitrate (NO <sub>3</sub> )      | 3-60 mg/L  |
| Nitrite (NO <sub>2</sub> )      | 0.1–1 mg/L |
| Soluble reactive phosphorus (P) | 0.5-5 mg/L |
| Total oxidised nitrogen (TON)   | 3-60 mg/l  |

#### Simple Nutrients in Soft Water

#### **CRM** Cat. #1349

Two 15 mL screw-cap vial spiking concentrates and one 24 mL screw-cap vial matrix concentrate yields up to 2 liters of sample.

| Ammonium (NH <sub>4</sub> )        | 0.1-1 mg/L |
|------------------------------------|------------|
| Nitrate (NO <sub>3</sub> )         | 3-60 mg/L  |
| Nitrite (NO <sub>2</sub> )         | 0.1-1 mg/L |
| Soluble reactive phosphorus (P)(P) | 0.5-5 mg/L |
| Total oxidised nitrogen (TON)      | 3-60 mg/L  |

Jennifer Watson Customer Service Representative

#### Organics

#### Volatiles

Benzene

#### **CRM** Cat. #1370

One 2 mL flame-sealed ampule spiking concentrate and one 24 mL screw-cap vial matrix concentrate yields up to 2 liters of sample to be analyzed for the compounds listed below at 0.1–50  $\mu$ g/L.

Carbon tetrachloride Chlorobenzene 1,2-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichloroethane 1,1-Dichloroethylene cis-1,2-Dichloroethylene trans-1,2-Dichloroethylene 1,2-Dichloropropane Ethylbenzene Methylene chloride Styrene Tetrachloroethene Toluene

1,2,4-Trichlorobenzene
1,1,1-Trichloroethane
1,1,2-Trichloroethane
Trichloroethene
Vinyl chloride

o-Xylene m-Xylene p-Xylene m+p-Xylene

Xylenes, total

Page intentionally blank

# CUSTOM STANDARDS

Standards manufactured to unique specifications available with a range of analytes, concentrations, and matrices.



#### Experience. Speed. Reliability.

Did you know that our chemists have prepared more than 20,000 unique custom standards?

Custom projects cover a range of analytes, concentrations, and matrices. Whether it is one standard or one hundred, our chemists regularly prepare standards for a range of needs and situations including managed methodology studies, project or site-specific matrices, project or sample-specific limits, and ultra-trace to percent level concentrations.

Examples of custom standards prepared:

- 10,000 mg/kg total organic carbon in soil
- Organic mercury in fish tissue
- Pesticides in freeze-dried spinach
- XRF metals in soil
- Speciated metal standards
- Organometallic standards

#### **Certification of Custom Standards**

Three options for certification of custom standards:

- Gravimetric/volumetric
- Analytical
- ISO 17034 certified reference materials\*
- \*Option is based on Waters ERA's ISO 17034 scope of accreditation.

#### From Simple to Complex and Everything in Between

A custom standard containing any analyte from the following programs can be supplied:

- Clean Water Act (CWA)
- Safe Drinking Water Act (SDWA)
- Resource Conservation and Recovery Act (RCRA)
- Superfund Contract Laboratory Program (CLP)
- Standards Council of Canada (SCC)
- Canadian Association for Laboratory Accreditation (CALA)
- Ontario Ministry of the Environment and Climate Change (MOECC) Safe Drinking Water Act (SDWA)

To request a custom quotation, please visit us online at

eraqc.com/customstandards

or email us at info@eraqc.com

#### **Custom Standards**

#### Performance Evaluation With Double-Blind Project

Gain a level of confidence with tangible evidence that your laboratory is meeting all quality objectives through a double-blind performance evaluation.

The key to evaluating the real performance of your laboratory is in finding the proper blend of realistic sample designs and accurate, stable analyte concentrations.

Here is how a performance evaluation program works:

- Specify the matrices, analytes, and concentrations. If a stock standard is not available, we can design and prepare custom PE standards.
- 2. Send us your empty sample bottles, labels, chain-ofcustody forms, and sample coolers.
- We prepare, dilute (if necessary), and preserve the standards; fill your sample bottles; and, return the samples to you via overnight delivery service. You'll receive Waters ERA's certified values and performance acceptance limits (PALs) under separate sealed cover.

- 4. Integrate the standards into your sampling event or introduce them into your lab's routine sample load.
- 5. Your lab analyzes the blind PE standards along with routine samples.
- Compare your lab's results to Waters ERA's certified values and performance acceptance limits.

We can help you design a double-blind project that matches your project-specific needs. Speak with a Waters ERA representative today to begin the process of understanding the real performance of your laboratory.



**Learn more about Custom Standards** 



#### **CUSTOM STANDARD QUOTATION REQUEST FORM**



| Contact Name:                                                                                   |                           |              |                                 | Date:                             |
|-------------------------------------------------------------------------------------------------|---------------------------|--------------|---------------------------------|-----------------------------------|
| Waters ERA Customer #:                                                                          | Phone:                    |              | Fax:                            |                                   |
| Company Name:                                                                                   |                           | Email:       |                                 |                                   |
| Bill to:                                                                                        |                           | Ship to:     |                                 |                                   |
|                                                                                                 |                           |              |                                 |                                   |
|                                                                                                 |                           |              |                                 |                                   |
|                                                                                                 |                           |              |                                 |                                   |
| O (shipping address is the same as billing                                                      | address)                  | Date Needed: |                                 |                                   |
| Additional/Special Requirements (packaging                                                      | , shipping, etc.):        |              |                                 |                                   |
|                                                                                                 |                           |              |                                 |                                   |
|                                                                                                 |                           |              |                                 |                                   |
| Ana                                                                                             | alytes                    | CAS          | 6 # Concentratio                | ns Units                          |
| 1                                                                                               |                           |              |                                 |                                   |
| 2                                                                                               |                           |              |                                 |                                   |
| 3                                                                                               |                           |              |                                 |                                   |
| 4                                                                                               |                           |              |                                 |                                   |
| 5                                                                                               |                           |              |                                 |                                   |
| 6                                                                                               |                           |              |                                 |                                   |
| 7                                                                                               |                           |              |                                 |                                   |
| 8                                                                                               |                           |              |                                 |                                   |
| 9                                                                                               |                           |              |                                 |                                   |
| 10                                                                                              |                           |              |                                 |                                   |
|                                                                                                 |                           | I I          | l .                             | '                                 |
| Sample Description (for label):                                                                 |                           |              |                                 |                                   |
| Matrix/Solvent:                                                                                 |                           |              |                                 |                                   |
| Preservative:                                                                                   |                           |              |                                 |                                   |
| Mass/Volume per Container:                                                                      |                           |              | Numb                            | er of Containers:                 |
| Intended Use (calibration, QC, etc.):                                                           |                           |              |                                 |                                   |
| Prep/Analytical Method:                                                                         |                           |              |                                 |                                   |
| Select: Ready-to-use Conce                                                                      | entrate O Dilution Instru | uctions:     |                                 |                                   |
| Most custom standards are gravimetrically c<br>Analytical verification may be available for you |                           |              | lation. Contact Waters ERA to c | liscuss pricing and availability. |

- A Waters ERA representative will contact you within one business day to discuss your request.
- Waters ERA provides blind standards to help you evaluate your laboratory's performance. Call and speak with an ERA representative to learn more.

Email this form to info@eraqc.com or fax to 303.421.0159.

For immediate assistance with a customs quote, call Waters ERA at 800.372.0122 or 303.431.8454 and speak with a Waters ERA Customer Service Representative.

## CALIBRATION STANDARDS

A variety of inorganic standards including metals, anions, pH, and other common inorganics that can be used for primary calibration or to prepare second source calibration standards.



**CRM:** A reference material characterized by a metrologically valid procedure for one or more specified properties, accompanied by a reference material certificate that provides the value of the specified property, its associated uncertainty, and a statement of metrological traceability.

A complete listing of ERA's CRMs can be found on our Scope of Accreditation for general requirements for competence of reference material producers available at www.eraqc.com/AboutERA/Accreditations.

**RM:** A material, sufficiently homogeneous and stable with respect to one or more specified properties, which has been established to be fit for its intended use in a measurement process.

#### Contents

| Description                               | Page |
|-------------------------------------------|------|
| AA/ICP Metals                             | 78   |
| Anions                                    | 77   |
| Cations by Ion Chromatography - 100 mg/L  | 76   |
| Cations by Ion Chromatography - 1000 mg/L | 76   |
| Chemical Oxygen Demand (COD) - 1000 mg/L  | 76   |
| Flame AA Cations                          | 78   |
| Flame AA Trace Metals                     | 78   |
| ICP Trace Metals                          | 78   |
| ICP-MS Major Cations                      | 77   |
| ICP-MS Metals                             | 77   |
| ICP-MS Trace Metals                       | 77   |
| Inorganics - 1000 mg/L                    | 76   |
| Ion Chromatography                        | 77   |
| lons - 1000 mg/L                          | 76   |
| MBAS/LAS Surfactants - 1000 mg/L          | 76   |
| Metals - 1000 mg/L                        | 77   |
| pH Buffers                                | 78   |
| Phenol - 1000 mg/L                        | 76   |
| Sulfide - 1000 mg/L                       | 76   |
| Total Kjeldahl Nitrogen (TKN) - 1000 mg/L | 76   |
| Total Organic Carbon (TOC) - 1000 mg/L    | 76   |
| Total Organic Halides (TOX) - 1000 mg/L   | 76   |

#### 1000 mg/L Standards

Standards can be used for primary calibration or to prepare second source calibration check standards. They are analytically traceable to NIST SRM's where available, and are guaranteed stable for one year. The certification documentation includes manufacturing uncertainties, traceability summaries and densities to aid in performing gravimetric dilutions. The documentation for metal standards includes impurities.

#### Inorganics – 1000 mg/L

#### **Chemical Oxygen Demand (COD)**

500 mL Bottle Cat. #974 125 mL Bottle Cat. #042

One 1000 mg/L standard preserved with H<sub>2</sub>SO<sub>4</sub> in an amber glass bottle.

#### Total Kjeldahl Nitrogen (TKN)

500 mL Bottle Cat. #996 125 mL Bottle Cat. #043

One 1000 mg/L standard preserved with HCl in a poly bottle.

#### **MBAS/LAS Surfactants**

Cat. #975

One 15 mL screw-cap vial with LAS at 1000 mg/L preserved with H2SO4.

#### **Total Organic Carbon (TOC)**

Cat. #978

One 500 mL amber glass bottles with TOC at 1000 mg/L preserved with H<sub>2</sub>SO<sub>4</sub>.

#### Total Organic Halides (TOX)

Cat. #976

One 2 mL flame-sealed ampule with TOX at 1000 mg/L in methanol.

#### **Phenol**

Cat. #982

One 500 mL amber glass bottle with phenol at 1000 mg/L preserved with H<sub>2</sub>SO<sub>4</sub>.

#### Sulfide

Cat. #999

One 10 mL flame-sealed ampule containing 1000 mg/L sulfide preserved with NaOH and zinc acetate.

#### lons - 1000 mg/L

| Parameter                    | Matrix           | 500 mL Bottle | 125 mL Bottle |
|------------------------------|------------------|---------------|---------------|
| Acetate                      | H <sub>2</sub> O | _             | Cat. #78202   |
| Ammonia as NH <sub>3</sub>   | H <sub>2</sub> O | Cat. #986     | Cat. #044     |
| Ammonia as N                 | H <sub>2</sub> O | Cat. #985     | Cat. #045     |
| Bromate                      | H <sub>2</sub> O | _             | Cat. #065     |
| Bromide                      | H <sub>2</sub> O | Cat. #987     | Cat. #046     |
| Chlorate                     | H <sub>2</sub> O | _             | Cat. #066     |
| Chloride                     | H <sub>2</sub> O | Cat. #988     | Cat. #047     |
| Chlorite                     | H <sub>2</sub> O | _             | Cat. #067     |
| Complex cyanide*             | NaOH             | Cat. #998     | Cat. #049     |
| Cyanide (free)*              | NaOH             | Cat. #997     | Cat. #048     |
| Fluoride                     | H <sub>2</sub> O | Cat. #989     | Cat. #050     |
| lodide                       | H <sub>2</sub> O | _             | Cat. #78212   |
| Nitrate as NO <sub>3</sub>   | H <sub>2</sub> O | Cat. #992     | Cat. #051     |
| Nitrate as N                 | H <sub>2</sub> O | Cat. #991     | Cat. #052     |
| Nitrite as N                 | H <sub>2</sub> O | Cat. #990     | Cat. #053     |
| Perchlorate                  | H <sub>2</sub> O | _             | Cat. #068     |
| Phosphate as PO <sub>4</sub> | H <sub>2</sub> O | Cat. #994     | Cat. #060     |
| Phosphate as P               | H <sub>2</sub> O | Cat. #993     | Cat. #061     |
| Sulfate                      | H <sub>2</sub> O | Cat. #995     | Cat. #062     |

<sup>\*</sup>Dangerous good. Requires special shipping.

#### Cations by Ion Chromatography – 100 mg/L

| Parameter                      | Matrix           | 125 mL Bottle |
|--------------------------------|------------------|---------------|
| Ammonium<br>as NH <sub>4</sub> | H <sub>2</sub> O | Cat. #78102   |
| Ammonium as N                  | H <sub>2</sub> O | Cat. #78104   |

#### Cations by Ion Chromatography – 1000 mg/L

| Parameter | Matrix           | 125 mL Bottle |
|-----------|------------------|---------------|
| Calcium   | H <sub>2</sub> O | Cat. #K10     |
| Magnesium | H <sub>2</sub> O | Cat. #K11     |

#### Metals - 1000 mg/L

| Parameter   | Matrix           |    | 125 mL Bottle |
|-------------|------------------|----|---------------|
| Aluminum    | HNO <sub>3</sub> | DG | Cat. #011     |
| Arsenic     | HNO <sub>3</sub> | DG | Cat. #013     |
| Beryllium   | HNO <sub>3</sub> | DG | Cat. #015     |
| Bismuth     | HNO <sub>3</sub> | DG | Cat. #K01     |
| Calcium     | HNO <sub>3</sub> | DG | Cat. #018     |
| Chromium    | HNO <sub>3</sub> | DG | Cat. #020     |
| Chromium VI | H <sub>2</sub> O | _  | Cat. #019     |
| Cobalt      | HNO <sub>3</sub> | DG | Cat. #021     |
| Copper      | HNO <sub>3</sub> | DG | Cat. #022     |
| Iron        | HNO <sub>3</sub> | DG | Cat. #023     |
| Lead        | HNO <sub>3</sub> | DG | Cat. #024     |
| Lithium     | HNO <sub>3</sub> | DG | Cat. #K04     |
| Magnesium   | HNO <sub>3</sub> | DG | Cat. #025     |
| Manganese   | HNO <sub>3</sub> | DG | Cat. #026     |
| Mercury     | HNO <sub>3</sub> | DG | Cat. #027     |
| Molybdenum  | HNO <sub>3</sub> | DG | Cat. #028     |
| Nickel      | HNO <sub>3</sub> | DG | Cat. #029     |
| Phosphorus  | HNO <sub>3</sub> | DG | Cat. #063     |
| Potassium   | HNO <sub>3</sub> | DG | Cat. #030     |
| Selenium    | HNO <sub>3</sub> | DG | Cat. #031     |
| Silica      | H <sub>2</sub> O | _  | Cat. #064     |
| Silicon     | HNO <sub>3</sub> | DG | Cat. #032     |
| Silver      | HNO <sub>3</sub> | DG | Cat. #033     |
| Sodium      | HNO <sub>3</sub> | DG | Cat. #034     |
| Strontium   | HNO <sub>3</sub> | DG | Cat. #035     |
| Thallium    | HNO <sub>3</sub> | DG | Cat. #036     |
| Tin         | HCI              | DG | Cat. #037     |
| Titanium    | HCl              | DG | Cat. #038     |
| Vanadium    | HNO <sub>3</sub> | DG | Cat. #039     |
| Yttrium     | HNO <sub>3</sub> | DG | Cat. #K08     |
| Zinc        | HNO <sub>3</sub> | DG | Cat. #040     |

DG - Dangerous good. Requires special shipping.

Other metals, concentrations, and volumes are also available.

Call Waters ERA Customer Service for more information.

#### **ICP-MS Metals**

These standards come with a Certificate of Traceability and Uncertainty. Use for initial as well as continuing calibration and tuning verification. Provided as convenient concentrates with densities allowing you to easily perform gravimetric dilutions.

#### **ICP-MS Trace Metals**

#### CRM Cat. #TMS001\*

One 125 mL screw-cap poly bottle preserved with HNO<sub>3</sub> and tartaric acid\*

| Aluminum  | 10.0 mg/L |
|-----------|-----------|
| Antimony  | 10.0 mg/L |
| Arsenic   | 10.0 mg/L |
| Barium    | 10.0 mg/L |
| Beryllium | 10.0 mg/L |
| Cadmium   | 10.0 mg/L |
| Chromium  | 10.0 mg/L |
| Cobalt    | 10.0 mg/L |
| Copper    | 10.0 mg/L |
| Iron      | 10.0 mg/L |
| Lead      | 10.0 ma/L |

| Manganese  | 10.0 mg/L |
|------------|-----------|
| Molybdenum | 10.0 mg/L |
| Nickel     | 10.0 mg/L |
| Selenium   | 10.0 mg/L |
| Silver     | 10.0 mg/L |
| Thallium   | 10.0 mg/L |
| Thorium    | 10.0 mg/L |
| Uranium    | 10.0 mg/L |
| Vanadium   | 10.0 mg/L |
| Zinc       | 10.0 mg/L |
|            |           |

<sup>\*</sup>Dangerous good. Requires special shipping.

#### **ICP-MS Major Cations**

#### CRM

Cat. #TMS002\*

One 125 mL screw-cap poly bottle preserved with HNO<sub>3</sub>\*

| Calcium   | 50.0 mg/L | Potassium | 50.0 mg/L |
|-----------|-----------|-----------|-----------|
| Magnesium | 50.0 mg/L | Sodium    | 50.0 mg/L |

<sup>\*</sup>Dangerous good. Requires special shipping.

#### **Anions**

#### Ion Chromatography

#### CRM

Cat. #981

One 15 mL screw-cap vial yields up to 200 mL after dilution. Designed to calibrate or verify IC calibrations.

Call for anion standards at lower levels.

| Bromide  | 0.2-20 mg/L | Nitrate as N   | 0.2–20 mg/L |
|----------|-------------|----------------|-------------|
| Chloride | 0.2-20 mg/L | Phosphate as P | 0.5-30 mg/L |
| Fluoride | 0.1-10 mg/L | Sulfate        | 0.5-30 mg/L |



**Learn more about Calibration products** 

#### AA/ICP Metals

All metals standards come with a Certificate of Traceability. The ICP Trace Metals standard also includes uncertainties. Use as initial as well as continuing calibration verification.

#### **Flame AA Trace Metals**

#### CRM

Cat. #508

One 24 mL screw-cap vial, preserved with  $\rm HNO_3$ , yields up to 500 mL after dilution. Designed for flame AA. Includes aluminum, antimony, arsenic, barium, beryllium, boron, cadmium, chromium, cobalt, copper, iron, lead, manganese, molybdenum, nickel, selenium, silver, strontium, thallium, vanadium, and zinc.

#### Flame AA Cations

#### CRM Cat. #530

One 15 mL screw-cap vial, preserved with HNO<sub>3</sub>, yields up to 250 mL after dilution.

Use with ICP, IC, and AA methods.

| Calcium10-200 mg/L   |
|----------------------|
| Magnesium10-200 mg/L |
| Potassium5-100 mg/L  |
| Sodium10-250 mg/L    |

#### **ICP Trace Metals**

#### CRM Cat. #524\*

One 500 mL whole-volume standard, preserved with HNO<sub>3</sub> and HCl, is ready-to-use\*

|            | , ,       |
|------------|-----------|
| Aluminum   | 10.0 mg/L |
| Antimony   | 1.0 mg/L  |
| Arsenic    | 1.0 mg/L  |
| Barium     | 1.0 mg/L  |
| Beryllium  | 1.0 mg/L  |
| Bismuth    | 1.0 mg/L  |
| Boron      | 1.0 mg/L  |
| Cadmium    | 1.0 mg/L  |
| Calcium    | 10.0 mg/L |
| Chromium   |           |
| Cobalt     | 1.0 mg/L  |
| Copper     | 1.0 mg/L  |
| lron       | 10.0 mg/L |
| Lanthanum  |           |
| Lead       |           |
| Magnesium  | 10.0 mg/L |
| Manganese  |           |
| Molybdenum | 1.0 mg/L  |
| Nickel     |           |
| Phosphorus | 1.0 mg/L  |
| Potassium  |           |
| Selenium   |           |
| Sodium     | 10.0 mg/L |
| Strontium  | 1.0 mg/L  |
| Tin        | 1.0 mg/L  |
| Titanium   | 1.0 mg/L  |
| Vanadium   | 1.0 mg/L  |
| Zinc       | 1.0 mg/L  |
|            |           |

<sup>\*</sup>Dangerous good. Requires special shipping.

#### pH Buffers

Our pH Buffers are analytically traceable to NIST SRMs, mercury free, guaranteed stable for at least one year after your receipt, and are supplied with a full certificate of analysis. Choose single bottles or convenient six-bottle cases.

| Value         | Volume | Single Bottle | Six-Bottle Case |
|---------------|--------|---------------|-----------------|
| pH 4.00       | 1 pint | Cat. #127     | Cat. #128       |
| pH 7.00       | 1 pint | Cat. #131     | Cat. #132       |
| pH 10.00      | 1 pint | Cat. #135     | Cat. #136       |
| Case of 2 ea. | Pints  |               | Cat. #141       |







Tony Ciacco Chemist

## DON'T STRESS THE TEST

We understand one of the biggest challenges you face in your laboratory is time. To help reduce laboratory stress, we provide you with final PT results in just two business days.

- Gain peace of mind knowing that you passed your PT quickly
- Identify the root cause of analysis problems faster
- Implement corrective actions sooner to improve the defensibility of results in less time

## When Time Is Not On Your Side

A critical evaluation is just that – critical. Sometimes you need to quickly demonstrate corrective action or confirm a new method, meaning you can't wait for a regularly scheduled PT. QuiK Response™ PTs are on-demand Proficiency Tests that return final results in just two business days of data entry.

Ask your Waters ERA representative or an authorized sales partner about QuiK Response PTs. For more information, contact our customer service team at 800.372.0122 / +1.303.431.8454. or email info@eraqc.com.

## REAGENTS

Reagents for environmental and industrial analysis.

| SC TI Vanadium Chromium Manga                                         | CO NICH 1 | Gaillum 49    |
|-----------------------------------------------------------------------|-----------|---------------|
| 2 40 41 42 43  Zr Nb MO TC  Inconium Niobium Molybdenum Technetium Ru | Pd        | IN Indiam     |
| 73 74 75 76<br>Ta W Re 05                                             | ALU GOID  | F Les         |
| Intalum Tungsten Rhenium Smum  106 107 108  50 Bh H5                  | 111       | FI FI         |
| aborgium Bohrium Hassium Meitner                                      | vm/Copr   |               |
| 61   62   63<br>m   Sm   Eu                                           | _100      |               |
| ium   Samarium   Europium                                             | 75 2      |               |
| 20 / Am                                                               | 50 dd     | / M           |
| n Americium Cul                                                       |           | um   Mendelev |
|                                                                       |           |               |

For the latest products and information, please visit us online at <a href="mailto:eraqc.com">eraqc.com</a>

80

#### Contents

| Description         | Page |
|---------------------|------|
| EDTA                | 82   |
| Hydrochloric Acid   | 82   |
| Miscellaneous       | 83   |
| pH                  | 82   |
| Potassium Hydroxide | 82   |
| Silver Nitrate      | 83   |
| Sodium Hydroxide    | 83   |
| Sodium Thiosulfate  | 83   |
| Sulfuric Acid       | 83   |

#### Reagents

Industrial reagents with tolerances of +/- 0.5%, and will hold the certified value lot-to-lot within 0.5%. Our reagents are shipped with a certificate of analysis and are homogeneous at a 95% confidence interval.

| EDTA             |               |
|------------------|---------------|
| 0.01 M, 1 Gallon | Cat. #183160  |
| 0.02 M, 1 Gallon | Cat. #183212  |
| 0.1 M, 1 Liter   | Cat. #183118  |
| 0.1 M, 1 Gallon  | Cat. #183120* |
| 0.1 M, 5 Gallon  | Cat. #187525* |

| Hydrochloric Acid      |    |               |
|------------------------|----|---------------|
| 0.01 N, 1 Liter        | DG | Cat. #183026  |
| 0.01 N, 1 Gallon       | DG | Cat. #183028* |
| 0.01 N, 5 Gallon       | DG | Cat. #187503* |
| 0.1 N, 1 Liter         | DG | Cat. #183030  |
| 0.1 N, 1 Liter, In IPA | DG | Cat. #184001  |
| 0.1 N, 2.5 Liter       | DG | Cat. #183010* |
| 0.1 N, 1 Gallon        | DG | Cat. #183032  |
| 0.1 N, 5 Gallon        | DG | Cat. #187506  |
| 0.25 N, 1 Liter        | DG | Cat. #183034* |
| 0.25 N, 1 Gallon       | DG | Cat. #183036* |
| 0.25 N, 5 Gallon       | DG | Cat. #187507* |
| 0.5 N, 1 Liter         | DG | Cat. #183038* |
| 0.5 N, 1 Gallon        | DG | Cat. #183040  |
| 0.5 N, 5 Gallon        | DG | Cat. #187508  |
| 0.65 N, 5 Gallon       | DG | Cat. #183016  |
| 1.0 N, 1 Liter         | DG | Cat. #183042  |
| 1.0 N, 1 Gallon        | DG | Cat. #183044  |
| 1.0 N, 5 Gallon        | DG | Cat. #187510* |
|                        |    |               |

DG - Dangerous good. Requires special shipping.



| рН                                                |               |
|---------------------------------------------------|---------------|
| pH 2 Buffer, No Color (1 Pint)                    | Cat. #183004  |
| pH 2 Buffer, No Color (1 Liter)                   | Cat. #183184  |
| pH 2 Buffer, No Color (1 Gallon)                  | Cat. #187027  |
| pH 2 Buffer, No Color (5 Gallon)                  | Cat. #183186* |
| pH 4 Buffer, No Color (1 Pint)                    | Cat. #183005  |
| pH 4 Buffer, No Color (1 Liter)                   | Cat. #183180  |
| pH 4 Buffer, No Color (1 Gallon)                  | Cat. #183181* |
| pH 4 Buffer, No Color (5 Gallon)                  | Cat. #183182  |
| pH 6 Concentrated Buffer,<br>No Color (2.5 Liter) | Cat. #183012  |
| pH 7 Buffer, No Color (1 Pint)                    | Cat. #183006  |
| pH 7 Buffer, No Color (1 Liter)                   | Cat. #183187  |
| pH 7 Concentrated Buffer,<br>No Color (2.5 Liter) | Cat. #183013  |
| pH 7 Buffer, No Color (1 Gallon)                  | Cat. #183188* |
| pH 7 Buffer, No Color (5 Gallon)                  | Cat. #183189  |
| pH 10 Buffer, No Color (1 Pint)                   | Cat. #183007  |
| pH 10 Buffer, No Color (1 Liter)                  | Cat. #183190  |
| pH 10 Buffer, No Color (1 Gallon)                 | Cat. #183191* |
| pH 10 Buffer, No Color (5 Gallon)                 | Cat. #183192  |
| pH 4 Buffer, Red (1 Gallon)                       | Cat. #187026  |
| pH 4 Buffer, Red (5 Gallon)                       | Cat. #183217  |
| pH 7 Buffer, Yellow (1 Gallon)                    | Cat. #187028  |
| pH 7 Buffer, Yellow (5 Gallon)                    | Cat. #183218  |
| pH 10 Buffer, Blue (1 Gallon)                     | Cat. #187029  |
| pH 10 Buffer, Blue (5 Gallon)                     | Cat. #183219  |

| Potassium Hydroxi       | de |               |
|-------------------------|----|---------------|
| 0.01 N, 1 Liter         | DG | Cat. #183090  |
| 0.01 N, 1 Gallon        | DG | Cat. #183092  |
| 0.01 N, 5 Gallon        | DG | Cat. #187521* |
| 0.1 N, 1 Liter          | DG | Cat. #183094  |
| In IPA, 0.1 N, 1 Gallon | DG | Cat. #183211* |
| 0.1 N, 1 Gallon         | DG | Cat. #183096* |
| 0.1 N, 5 Gallon         | DG | Cat. #187522  |
| 0.25 N, 1 Liter         | DG | Cat. #183098* |
| 0.25 N, 1 Gallon        | DG | Cat. #183100* |
| 0.25 N, 5 Gallon        | DG | Cat. #187523* |
| 0.5 N, 1 Liter          | DG | Cat. #183102* |
| 0.5 N, 1 Gallon         | DG | Cat. #183104* |
| 0.5 N, 5 Gallon         | DG | Cat. #187524* |

DG - Dangerous good. Requires special shipping.

 $<sup>\</sup>ensuremath{^*}$  This item is a custom order product. Please contact us for ordering details.

| Silver Nitrate   |    |               |
|------------------|----|---------------|
| 0.1 N, 1 Liter   | DG | Cat. #183110* |
| 0.1 N, 1 Gallon  | DG | Cat. #183112* |
| 0.25 N, 1 Liter  | DG | Cat. #183114* |
| 0.25 N, 1 Gallon | DG | Cat. #183116* |

| Sodium Hydroxide |    |               |
|------------------|----|---------------|
| 0.01 N, 1 Liter  | DG | Cat. #183070  |
| 0.01 N, 1 Gallon | DG | Cat. #183072* |
| 0.01 N, 5 Gallon | DG | Cat. #187516* |
| 0.1 N, 1 Liter   | DG | Cat. #183074  |
| 0.1 N, 1 Gallon  | DG | Cat. #183076  |
| 0.1 N, 5 Gallon  | DG | Cat. #187517  |
| 0.25 N, 1 Liter  | DG | Cat. #183078* |
| 0.25 N, 1 Gallon | DG | Cat. #183080* |
| 0.25 N, 5 Gallon | DG | Cat. #187518  |
| 0.5 N, 1 Gallon  | DG | Cat. #183082* |
| 0.5 N, 5 Gallon  | DG | Cat. #187519  |
| 1.0 N, 1 Liter   | DG | Cat. #183086  |
| 1.0 N, 1 Gallon  | DG | Cat. #183088* |
| 1.0 N, 5 Gallon  | DG | Cat. #183156* |

DG - Dangerous good. Requires special shipping.

| Sodium Thiosulfate |               |
|--------------------|---------------|
| 0.0394 N, 1 Gallon | Cat. #182002  |
| 0.0394 N, 5 Gallon | Cat. #182003  |
| 0.1 N, 1 Liter     | Cat. #183126  |
| 0.1 N, 1 Gallon    | Cat. #183128  |
| 0.25 N, 1 Liter    | Cat. #183130  |
| 0.25 N,1 Gallon    | Cat. #183132* |

| Sulfuric Acid    |    |               |
|------------------|----|---------------|
| 0.01 N, 1 Liter  | DG | Cat. #183048  |
| 0.01 N, 1 Gallon | DG | Cat. #183049* |
| 0.02 N, 1 Liter  | DG | Cat. #183050  |
| 0.02 N, 1 Gallon | DG | Cat. #183052  |
| 0.02 N, 5 Gallon | DG | Cat. #187511  |
| 0.05 N, 1 Liter  | DG | Cat. #183003* |
| 0.1 N, 1 Liter   | DG | Cat. #183054  |
| 0.1 N, 1 Gallon  | DG | Cat. #183056* |
| 0.1 N, 5 Gallon  | DG | Cat. #187512* |
| 0.2 N, 1 Liter   | DG | Cat. #183058* |
| 0.2 N, 1 Gallon  | DG | Cat. #183060* |
| 0.2 N, 5 Gallon  | DG | Cat. #187514* |
| 0.5 N, 1 Liter   | DG | Cat. #183062* |
| 0.5 N,1 Gallon   | DG | Cat. #183064* |
| 1.0 N, 1 Liter   | DG | Cat. #183066  |
| 1.0 N, 1 Gallon  | DG | Cat. #183068* |
| 1.0 N, 5 Gallon  | DG | Cat. #187515  |

| Miscellaneous                              |    |               |
|--------------------------------------------|----|---------------|
| KOH 5 M, KCN 1 M, 5 Gallon                 | _  | Cat. #183213  |
| Manganese Standard, 40 g/L, 1 Liter        | DG | Cat. #183008  |
| Manganese Standard, 55 g/L, 1 Liter        | DG | Cat. #183009  |
| TISAB, Fluoride Buffer, 1 Gallon           | _  | Cat. #183162  |
| Barium Perchlorate, 0.1 N, 1 Liter         | _  | Cat. #183017  |
| Potassium Dichromate, 0.1 N, 1 Liter       | DG | Cat. #183221  |
| Potassium Permanganate, 0.1 N, 2.5 Liter   | DG | Cat. #183001  |
| Ferrous Ammonium Sulfate, 0.25 N, 1 Gallon | DG | Cat. #183011  |
| Phenolphthalein, 0.5%, 1 Pint              | DG | Cat. #183168* |
| Sodium Carbonate, 1.0 N, 1 Liter           | _  | Cat. #183172  |
| Sodium Carbonate, 25 g/L, 10 Liter         | _  | Cat. #183002  |

 $\operatorname{\mathsf{DG}}\nolimits$  – Dangerous good. Requires special shipping.



#### **Learn more about Reagents**







Kathie Paulling Project Coordinator -Customs, Reagents

<sup>\*</sup> This item is a custom order product. Please contact us for ordering details.

# CHROMATOGRAPHIC AND SAMPLE CLEANUP PRODUCTS FROM WATERS

#### Sample Preparation

#### Sample concentration and cleanup

#### Oasis Sample Extraction Products

Analysis of water samples often requires concentration and cleanup of "dirty" or complex matrices. Oasis™ Solid-Phase Extraction (SPE) Products allow for simple and rapid method development. With the Oasis product line, you can expect robust SPE methods that provide reproducible results and high recoveries, without having to be concerned with sorbent drying or pH limitations.

#### Key features/benefits

- Greater capacity.
- Excellent stability over entire pH range.
- Cleanest extracts.
- Elimination of matrix effects.
- Reduction of ion suppression.
- Oasis Sample Extraction Products.
- Superior recovery, reproducibility, retention, and selectivity for a wide variety of compounds.
- Available in cartridges or high throughput, 96-well plates.

#### Certified cleanliness for ultra-trace level analysis

#### **Vials**

Waters Certified Vials are manufactured to exacting standards, tested and certified to give you confidence that the peaks you observe are representative of your sample, not your vials.

#### Key features/benefits

- Prevent ghost peaks stemming from contaminants.
- Eliminate unexplained masses in MS.
- Eliminate potential of needle damage due to tight dimensional specifications.

### Reduce interference and increase sensitivity for better quality results

#### **Certified Sep-Pak SPE Cartridges**

Sep-Pak™ SPE Cartridges are widely used by scientists for trace-level analysis in water samples. Manufactured using strict performance and cleanliness specifications and QC-tested for extractables and leachables, Certified Sep-Pak Sample Preparation Products reduce interference and increase sensitivity by eliminating contaminants introduced by the cartridge hardware and sorbents.

#### Key features/benefits

- Superior extracts for water sample residue analysis.
- Cleanliness and reproducibly needed for demanding sample preparation methods.
- Allows for accurate, high-quality water testing results.













Waters Certified Vials.

#### LC COLUMNS AND CONSUMABLES

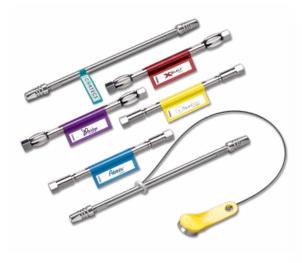
### Maximize efficiency, ruggedness, and throughput

#### **LC Columns**

Featured in methods to meet regulatory requirements throughout the world, Waters columns provide cuttingedge performance. In addition to our complete selection of UHPLC, UPLC,™ and HPLC column chemistries, Waters also provides application-specific columns for optimal specificity.

#### **Key features/benefits**

- Industry leading reliability and reproducibility.
- Wide range of general purpose and application specific columns.
- Uncompromised analytical performance.


#### Standardize and simplify workflows

#### **Analytical Standards and Reagents**

Waters understands that the quality of the standards and reagents you use directly correlates to the quality of your results. Our standards are precisely formulated to ensure data comparability and defensibility over time, and provide absolute traceability to meet your quality assurance requirements.

#### Key features/benefits

- Saves costly validation time of standards and reagents.
- Easy and convenient formulations and packaging ensure accuracy of LC and LC-MS results over time.
- Optimized kits to keep your system operating at peak performance.



UPLC, UHPLC, and HPLC Columns.



### Waters

THE SCIENCE OF WHAT'S POSSIBLE.™

These and many more products are available for purchase directly from waters.com, or call 800.252.HPLC (4752)

## PROCESS WATER

Products intended for use in industrial or municipal settings where water quality parameters are being monitored continuously (by in-line, on-line, or at-line instrumentation), or by frequent and routine collection of samples for laboratory analysis.

Products in this section include calibration, system suitability, and conductivity solutions and kits for TOC, Conductivity, and Turbidity devices for ultra-pure water analysis including pharmaceutical, power generation, and semiconductor manufacturing. We also offer reagents and other instrument consumables such as replacement lamps.



#### Contents

| Description                  | Page |
|------------------------------|------|
| Analytik Jena TOC            | 93   |
| ANATEL TOC                   | 88   |
| Cleaning Validation Products | 100  |
| Conductivity Standards       | 103  |
| Consumables                  | 99   |
| High-Purity Water            | 102  |
| Inorganic Carbon             | 101  |
| OI Analytical TOC            | 94   |
| Other TOC Instruments        | 98   |
| pH Buffers                   | 102  |
| Shimadzu TOC                 | 96   |
| Sievers TOC                  | 91   |
| Teledyne Tekmar TOC          | 97   |
| Turbidity                    | 101  |

## **ANATEL TOC**

All of our ANATEL Certified Reference Materials (CRMs) are prepared using carefully controlled processes that are scrutinized under Waters ERA's ISO 17034 accreditation. CRMs for the ANATEL PAT700 are formulated specifically for the unique technology inherent in that instrument and are packaged in ready-to-use RFID tagged bottles.

#### **ANATEL PAT700**

| System Suitability                                                                                                                                                                             |       |                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------|
| Sets - USP / EP                                                                                                                                                                                | Cat.# | Availability               |
| USP Bulk Water System Suitability Set<br>Includes (1) Reagent Water Rw, (1) 0.5 mg/L<br>C USP Sucrose, and (1) 0.5 mg/L USP<br>1,4-Benzoquinone in 60 mL bottles.<br>Replaces ANATEL FG7018402 | 18402 | Ships in 1<br>business day |

| Calibration                                                                                                                                                                             |       |                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------|
| Kits                                                                                                                                                                                    | Cat.# | Availability               |
| Calibration Standards Kit Includes (1) Blank, (1) 0.25 mg/L C NIST Sucrose, (1) 0.50 mg/L C NIST Sucrose, and (1) 0.75 mg/L C NIST Sucrose in 60 mL bottles.  Replaces ANATEL FG7019202 | 19202 | Ships in 1<br>business day |

| Conductivity                                                                                                                             |        |                            |
|------------------------------------------------------------------------------------------------------------------------------------------|--------|----------------------------|
| Kits                                                                                                                                     | Cat. # | Availability               |
| Conductivity Solution Kit<br>Includes (1) 100 µS/cm Potassium Chloride (KCI)<br>Solution in a 60 mL bottle.<br>Replaces ANATEL FG7002602 | 02602  | Ships in 1<br>business day |

| Validation                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------|
| Kits                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Cat.# | Availability                |
| Validation Control Kit<br>Includes (1) Blank, and (1) 0.50 mg/L C NIST<br>Sucrose in 60 mL bottles.<br>Replaces ANATEL FG7019222                                                                                                                                                                                                                                                                                                                              | 19222 | Ships in 1<br>business day  |
| Validation Protocol Reagent Kit Includes (14) Blanks, (5) Conductivity Solutions, (1) Validation Control Kit, (2) Calibration Standards Kit, (1) System Suitability Set, (1) Excursion with Validation Kit, (1) 0.25 mg/L C NIST Sucrose, (1) 0.75 mg/L C NIST Sucrose, (1) USP Reagent Water Rw, (1) 0.50mg/L C USP 1,4-Benzoquinone, and (2) Excursion Bottles (all bottles are 60 mL). Does not include NIST Traceable Resistor. Replaces ANATEL FG7019232 | 19232 | Ships in 5<br>business days |

| Consumables                                                                                                                          |       |                             |
|--------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------|
|                                                                                                                                      | Cat.# | Availability                |
| Replacement UV Lamp                                                                                                                  | 20037 | Ships in 1<br>business day  |
| 60 mL Pre-cleaned HDPE Bottles –<br>Natural (case of 50)<br>Case of 50: 60 mL Low TOC HDPE bottles with<br>septa cap and dust cover. | 25056 |                             |
| Pre-Cleaned Caps w/Septa (100/pack)                                                                                                  | 25011 | Ships in 5<br>business days |

Individual set/kit components and/or bulk sizes may be available for the TOC and Conductivity standards. Please contact your Waters ERA sales representative if you have questions about any products that are not listed in this publication.





The following CRMs are used for calibration and validation of the ANATEL A643 on-line TOC analyzer.

#### **ANATEL A643**

| System Suitability                                                                                                                                                                        |       |                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------|
| Sets - USP / EP                                                                                                                                                                           | Cat.# | Availability               |
| USP Bulk Water System Suitability Set<br>Includes (2) Reagent Water Rw, (1) 0.5 mg/L C USP<br>Sucrose, and (1) 0.5 mg/L USP 1,4-Benzoquinone in<br>60 mL bottles.<br>Replaces Cat.# 18400 | 48400 | Ships in 1<br>business day |

| Calibration                                                                                                                                                                        |       |                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------|
| Kits                                                                                                                                                                               | Cat.# | Availability               |
| Calibration Standards Kit Includes (2) Blanks, (1) 0.25 mg/L C NIST Sucrose, (1) 0.50 mg/L C NIST Sucrose, and (1) 0.75 mg/L C NIST Sucrose in 60 mL bottles. Replaces Cat.# 19200 | 49200 | Ships in 1<br>business day |

| Conductivity                                                                                                                             |       |                            |
|------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------|
| Kits                                                                                                                                     | Cat.# | Availability               |
| Conductivity Solution Kit<br>Includes (1) 100 μS/cm Potassium Chloride (KCI)<br>Solution in a 60 mL bottle.<br>Replaces ANATEL FG5010401 | 02610 | Ships in 1<br>business day |

| Validation                                                                                                                                                                                                                                                                                                                                                |       |                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------|
| Kits                                                                                                                                                                                                                                                                                                                                                      | Cat.# | Availability                |
| Validation Control Kit<br>Includes (2) Blanks, and (1) 0.50 mg/L C NIST<br>Sucrose in 60 mL bottles.<br>Replaces Cat.# 19220                                                                                                                                                                                                                              | 49220 | Ships in 1<br>business day  |
| Validation Protocol Reagent Kit Includes (10) Blanks, (3) 0.25 mg/L C NIST Sucrose, (5) 0.50 mg/L C NIST Sucrose, (3) 0.75 mg/L C NIST Sucrose, (1) 100 µS/cm Conductivity Solution Kit, and (4) USP System Suitability Sets (all bottles are 60 mL). Replaces reference materials portion of ANATEL FG5017701. Does not include NIST Traceable Resistor. | 19230 | Ships in 5<br>business days |
| Validation Kit Includes (2) Blanks, and (1) 0.25 mg/L C NIST Sucrose, (1) 0.50 mg/L C NIST Sucrose, (1) 0.750 mg/L C NIST Sucrose, (1) 100 μS/cm Conductivity Solution Kit, and (1) USP System Suitability Set in 60 mL bottles. Replaces Cat.# 19210                                                                                                     | 49210 | Ships in 1<br>business day  |

| Consumables                                                                                                                          |        |                            |
|--------------------------------------------------------------------------------------------------------------------------------------|--------|----------------------------|
|                                                                                                                                      | Cat.#  | Availability               |
| Replacement UV Lamp<br>Replaces ANATEL FG6002601                                                                                     | 20036A | Ships in 1<br>business day |
| 60 mL Pre-cleaned HDPE Bottles –<br>Natural (case of 50)<br>Case of 50: 60 mL Low TOC HDPE bottles with<br>septa cap and dust cover. | 25056  | Ships in 1<br>business day |
| Pre-Cleaned Caps w/Septa (100/pack)                                                                                                  | 25011  | Ships in 1<br>business day |

Individual set/kit components and/or bulk sizes may be available for the TOC and Conductivity standards. Please contact your Waters ERA sales representative if you have questions about any products that are not listed in this publication.

## **ANATEL TOC**

#### **ANATEL TOC600**

The following CRMs are used for calibration and validation of the ANATEL TOC600 TOC analyzer.

| System Suitability                                                                                                                                                                               |       |                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------|
| Sets - USP / EP                                                                                                                                                                                  | Cat.# | Availability               |
| USP/EP Bulk Water<br>System Suitability Set<br>Includes (1) Reagent Water Rw, (1) 0.5 mg/L C USP<br>Sucrose, and (1) 0.5 mg/L USP 1,4-Benzoquinone in<br>125 mL bottles.<br>Replaces Cat.# 18036 | 48036 | Ships in 1<br>business day |

| Calibration                                                                                                                                                                                   |       |                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------|
| Kits                                                                                                                                                                                          | Cat.# | Availability               |
| Calibration Standards Kit<br>Includes (1) Blank, (1) 0.25 mg/L C NIST Sucrose,<br>(1) 0.50 mg/L C NIST Sucrose, and (1) 0.75 mg/L C<br>NIST Sucrose in 125 mL bottles.<br>Replaces Cat.#19201 | 49201 | Ships in 1<br>business day |

| Conductivity                                                                                                                     |       |                            |
|----------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------|
| Kits                                                                                                                             | Cat.# | Availability               |
| Conductivity Solution Kit Includes (1) 100 μS/cm Potassium Chloride (KCI) Solution in a 125 mL bottle. Replaces ANATEL FG5002601 | 02601 | Ships in 1<br>business day |

| Validation                                                                                                                                                                                                                                               |       |                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------|
| Kits                                                                                                                                                                                                                                                     | Cat.# | Availability                |
| Validation Control Kit<br>Includes (1) Blank, and (1) 0.50 mg/L C NIST Sucrose<br>in 125 mL bottles.<br>Replaces Cat.#19221                                                                                                                              | 49221 | Ships in 1<br>business day  |
| Validation Protocol Reagent Kit Includes (3) TOC600 Calibration Kits, (1) TOC600 100 µS/cm Conductivity Solution Kit, (2) TOC600 Validation Control Kits, and (4) TOC600 USP System Suitability Sets (all bottles are 125 mL). Replaces ANATEL FG5019231 | 19231 | Ships in 5<br>business days |

| Consumables                                   |        |                            |
|-----------------------------------------------|--------|----------------------------|
|                                               | Cat.#  | Availability               |
| Replacement UV Lamp Replaces ANATEL FG6002601 | 20036A | Ships in 1<br>business day |

#### ANATEL A-1000

The following CRMs are used for calibration and validation of the ANATEL A-1000 TOC analyzer.

| System Suitability                                                                                                                                                                                     |       |                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------|
| Sets - USP / EP                                                                                                                                                                                        | Cat.# | Availability                |
| USP/EP Bulk Water<br>System Suitability Set<br>Includes (1) Reagent Water Rw, (1) 0.5 mg/L C USP<br>Sucrose, and (1) 0.5 mg/L USP 1,4-Benzoquinone in<br>1000 mL HDPE bottles.<br>Replaces Cat.# 19030 | 49030 | Ships in 5<br>business days |





**Learn more about Total Organic Carbon products** 

## **SIEVERS**

#### Sievers 900, 5310 C, M9, and M5310 C



All of our Sievers Certified Reference Materials (CRMs) are prepared using carefully controlled processes that are scrutinized under Waters ERA's ISO 17034 accreditation.

Contact Waters ERA at info@eraqc.com (USA) or ERA\_Europe\_Sales@waters.com (Europe) for availability of Sievers 800 and 400 consumables.

| System Suitability                                                                                                                                                                        |        |                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------|
| Sets - USP / EP                                                                                                                                                                           | Cat.#  | Availability                |
| USP/EP Bulk Water System Suitability Set Includes (1) Reagent Water Rw, (1) 0.5 mg/L C USP Sucrose, and (1) 0.5 mg/L USP 1,4-Benzoquinone in 40 mL vials.  Replaces Sievers CSTD 31004-01 | 18000  | Ships in 1<br>business day  |
| Sets - USP                                                                                                                                                                                | Cat.#  | Availability                |
| USP Sterile Water System Suitability Set Includes (1) Reagent Water Rw, (1) 8.0 mg/L C USP Sucrose, and (1) 8.0 mg/L USP 1,4-Benzoquinone in 40 mL vials.                                 | 18061  | Ships in 5<br>business days |
| Sets - JP                                                                                                                                                                                 | Cat.#  | Availability                |
| JP System Suitability Set<br>Includes (1) Reagent Water, and (1) 0.50 mg/L C from<br>Sodium Dodecylbenzene Sulfonate in 40 mL vials.<br>Replaces Sievers CSTD 90039-01                    | 18000J | Ships in 5<br>business days |

| Consumables                                                                                                                                                                                                                    |       |                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------|
|                                                                                                                                                                                                                                | Cat.# | Availability                |
| Replacement UV Lamp                                                                                                                                                                                                            | 20045 | Ships in 1<br>business day  |
| Replacement Pump Tubing                                                                                                                                                                                                        | 20060 | Ships in 1<br>business day  |
| Model 900/5310 C Resin Bed                                                                                                                                                                                                     | 20075 | Ships in 1<br>business day  |
| Service Kit for Sievers Model 900/5310C<br>Annual Service Kit for Sievers Model 900/5310C<br>includes Cat # 20075 (Replacement Resin Bed),<br>Cat # 20045 (Relpacement UV Lamp), and<br>Cat # 20060 (Replacement Pump Tubing). | 20095 | Ships in 1<br>business day  |
| Phosphoric Acid Reagent<br>Cartridge –150 mL*                                                                                                                                                                                  | 21010 | Ships in 5<br>business days |
| Phosphoric Acid Reagent Cartridge – 300 mL*                                                                                                                                                                                    | 21001 | Ships in 5<br>business days |
| Persulfate Oxidizer Reagent<br>Cartridge – 150 mL                                                                                                                                                                              | 21015 | Ships in 5<br>business days |
| Persulfate Oxidizer Reagent<br>Cartridge – 300 mL                                                                                                                                                                              | 21006 | Ships in 5<br>business days |
| 40 mL Ultra-Low TOC Vials, 80/case                                                                                                                                                                                             | 25025 | Ships in 1<br>business day  |
| 60 Micron In-Line Stainless Filter                                                                                                                                                                                             | 25035 | Ships in 5<br>business days |

<sup>\*</sup> Dangerous good. Requires special shipping.

| Calibration & Validation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------|
| Kits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Cat. # | Availability                |
| Linearity Set Includes (1) Blank, (1) 0.25 mg/L C NIST Sucrose, (1) 0.50 mg/L C NIST Sucrose and (1) 0.75 mg/L C NIST Sucrose in 40 mL vials.  Replaces CSTD 31012-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 19515  | Ships in 5<br>business days |
| Calibration & Verification Set<br>Includes (2) Blanks, (2) 1.0 mg/L IC NIST NaHCO <sub>3</sub> , (1)<br>1.0 mg/L C NIST KHP, and (1) 1.0 mg/L C NIST Sucrose<br>in 40 mL vials.<br>Replaces CSTD 90016-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 19600  | Ships in 1<br>business day  |
| Multi-Point Calibration Set Includes (1) Blank, (1) each of 1.0, 5.0, 10.0, 25.0 and 50.0 mg/L C NIST KHP, and (1) each of 1.0, 5.0, 10.0, 25.0 and 50.0 mg/L IC NIST NaHCO <sub>3</sub> in 40 mL vials. Replaces CSTD 90000-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 19610  | Ships in 5<br>business days |
| Autoreagents Calibration Set Includes (1) Blank, (1) 25.0 mg/L C NIST KHP, (1) 25.0 mg/L IC NIST NaHCO <sub>3</sub> , and (1) 50.0 mg/L C from Nicotinamide in 40 mL vials Replaces CSTD 90036-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 19611  | Ships in 5<br>business days |
| Autoreagents Calibration & Verification Set Includes (2) Blanks, (1) 25.0 mg/L C NIST KHP, (1) 25.0 mg/L IC NIST NaHCO <sub>3</sub> , (1) 50.0 mg/L C from Nicotinamide, (1) 25.0 mg/L C NIST Sucrose, (1) 50.0 mg/L C NIST Sucrose, and (1) 50 mg/L IC NaHCO <sub>3</sub> in 40 mL vials.  Replaces CSTD 90028-01                                                                                                                                                                                                                                                                                                                                                                              | 19616  | Ships in 5<br>business days |
| Specificity Verification Set Includes (1) Blank, (1) 0.50 mg/L C from Methanol, (1) 0.50 mg/L C from Nicotinamide, and (1) 0.50 mg/L C from KHP in 40 mL vials.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 19615  | Ships in 5<br>business days |
| Validation Set with Calibration & Verification Includes (28) 40 mL vials, (2) Blanks, (2) 1.0 mg/L C NIST KHP, (2) 1.0 mg/L C NIST SUCROSE, (1) 0.50 mg/L C NIST SUCROSE, (1) 0.50 mg/L C NIST SUCROSE, (1) 0.50 mg/L C IC NIST SUCROSE, (1) 0.50 mg/L C From USP SUCROSE RS and (2) 0.50 mg/L C From USP 1,4-Benzoquinone Rss; (1) Blank, (1) 0.25 mg/L C NIST SUCROSE, (1) 0.50 mg/L C NIST SUCROSE, (1) Reagent Water, (1) 0.50 mg/L C from USP SUCROSE; (1) Blank; (1) 0.50 mg/L C From USP SUCROSE; (1) Blank; (1) 0.50 mg/L C From MIST KHP; (1) Reagent Water Rw; (1) 0.50 mg/L C from USP SUCROSE RS; and (1) 0.50 mg/L C from USP 1,4-Benzoquinone Rss.  **Replaces Sievers CSTD90025* | 19617  | Ships in 5<br>business days |
| Calibration Kit Includes (1) Blank, and (1) 1.0 mg/L IC NIST NaHCO <sub>3</sub> , (1) 1.0 mg/L C NIST KHP in 40 mL vials. Replaces CSTD 90001-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 19620  | Ships in 1<br>business day  |

Individual set/kit components and/or bulk sizes may be available for the TOC and Conductivity standards. Please contact your Waters ERA sales representative if you have questions about any products that are not listed in this publication.

## **SIEVERS**

#### Sievers 500 RL

The following CRMs are designed to use on Sievers 500 RL TOC instruments for calibration, validation, and to satisfy regulatory requirements.

Contact Waters ERA at info@eraqc.com (USA) or ERA\_Europe\_Sales@waters.com (Europe) for availability of Sievers 800 and 400 consumables.

| System Suitability                                                                                                                                                                                   |        |                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------|
| Sets - USP / EP                                                                                                                                                                                      | Cat.#  | Availability                |
| USP/EP Bulk Water<br>System Suitability Set<br>Includes (1) Reagent Water Rw, (1) 0.5 mg/L C USP<br>Sucrose, and (1) 0.5 mg/L USP 1,4-Benzoquinone in<br>40 mL vials.<br>Replaces Sievers CSTD 74403 | 15105  | Ships in 1<br>business day  |
| Sets - USP                                                                                                                                                                                           | Cat.#  | Availability                |
| USP Sterile Water System Suitability Set Includes (1) Reagent Water Rw, (1) 8.0 mg/L C USP Sucrose Rs, and (1) 8.0 mg/L USP 1,4-Benzoquinone Rss in 40 mL vials.                                     | 18061  | Ships in 5<br>business days |
| Sets - JP                                                                                                                                                                                            | Cat.#  | Availability                |
| JP System Suitability Set<br>Includes (1) Reagent Water, and (1) 0.50 mg/L C from<br>Sodium Dodecylbenzene Sulfonate in 40 mL vials.<br>Replaces Sievers CSTD 90039-01                               | 18000J | Ships in 5<br>business days |

| Consumables                        |       |                             |
|------------------------------------|-------|-----------------------------|
|                                    | Cat.# | Availability                |
| Replacement UV Lamp                | 20045 | Ships in 1<br>business day  |
| 40 mL Ultra-Low TOC Vials, 80/case | 25025 | Ships in 1<br>business day  |
| 60 Micron In-Line Stainless Filter | 25035 | Ships in 5<br>business days |

Individual set/kit components and/or bulk sizes may be available for the TOC and Conductivity standards. Please contact your Waters ERA sales representative if you have questions about any products that are not listed in this publication.

| Calibration & Validation RL (Standard IOS) Single-Use CRMs                                                                                                                                                                                                                                                                             |       |                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------|
| Kits                                                                                                                                                                                                                                                                                                                                   | Cat.# | Availability                |
| Single-Point Calibration Set<br>Includes (2) Blanks, (1) 1.5 mg/L C NIST KHP in 40 mL<br>glass vials, and (1) 25.0 µS/cm Conductivity standard<br>in 30 mL HDPE vial.<br>Replaces CSTD 74401                                                                                                                                           | 15100 | Ships in 5<br>business days |
| Single-Point Calibration/Verification Kit Includes (2) Blanks, (1) 1.5 mg/L C NIST KHP in 40 mL glass vials, (1) 25.0 μS/cm Conductivity standard in 30 mL HDPE vial, (1) Verification Blank, (1) 0.50 mg/L C NIST Sucrose in 40 mL glass vials, and (1) 25.0 μS/cm Conductivity standard in 30 mL HDPE vial.  **Replaces CSTD 74612** | 15101 | Ships in 5<br>business days |
| Accuracy/Precision/Verification Set Includes (1) Verification Blank, (1) 0.5 mg/L C NIST Sucrose in 40 mL glass vials, and (1) 25.0 μS/cm Conductivity standard in 30 mL HDPE vial.  Replaces CSTD 74402                                                                                                                               | 15104 | Ships in 5<br>business days |
| Linearity Set Includes (1) Linearity Blank, (1) each 0.25 mg/L, 0.50 mg/L, and 0.75 mg/L C NIST KHP in 40 mL glass vials. Replaces CSTD 74406                                                                                                                                                                                          | 15106 | Ships in 5<br>business days |
| Single-Point Calibration Set – TOC Only<br>Includes (2) Calibration Blanks and (1) 1.5 mg/L<br>C NIST KHP in 40 mL glass vials.<br>Replaces CSTD 74405                                                                                                                                                                                 | 15109 | Ships in 5<br>business days |
| Accuracy/Precision/Verification Set – TOC Only Includes (1) Verification Blank and (1) 0.5 mg/L C NIST Sucrose in 40 mL glass vials. Conductivity standard is not included in this set. Replaces CSTD 74407                                                                                                                            | 15110 | Ships in 5<br>business days |
| Single-Point Calibration/Verification Set – TOC Only Includes (2) Blanks, (1) 1.5 mg/L C NIST KHP, (1) Verification Blank, and (1) 0.50 mg/L C NIST Sucrose in 40 mL glass vials. Conductivity standards are not included in this set. Replaces CSTD 74622                                                                             | 15111 | Ships in 5<br>business days |

## ANALYTIK JENA

All of our Analytik Jena Certified Reference Materials (CRMs) are prepared using carefully controlled processes that are scrutinized under Waters ERA's ISO 17034 accreditation.

The following CRMs are designed to use on Analytik Jena TOC instruments for calibration, validation, and to satisfy regulatory requirements.

| System Suitability                                                                                                                                                                                                     |               |                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------------------|
| Sets - USP/EP                                                                                                                                                                                                          | Cat.#         | Availability               |
| USP/EP Bulk Water System<br>Suitability Set<br>Includes (1) Reagent Water Rw, (1) 0.5 mg/L C USP<br>Sucrose, and (1) 0.5 mg/L USP 1,4-Benzoquinone in<br>40 mL vials.<br>For use with AJ multi N/C pharma HS and IL550 | 18000         | Ships in 1<br>business day |
| USP/EP Bulk Water System Suitability Set Includes (1) Reagent Water Rw, (1) 0.5 mg/L C USP Sucrose, and (1) 0.5 mg/L USP 1,4-Benzoquinone in 40 mL vials. For use with AJ multi N/C UV HS and IL500                    | 18004         | Ships in 1<br>business day |
| Sets - USP                                                                                                                                                                                                             | Cat.#         | Availability               |
| USP Sterile Water System Suitability Set Includes (1) Reagent Water Rw, (1) 8.0 mg/L C USP                                                                                                                             | 18061         | Ships in 5                 |
| Sucrose Rs, and (1) 8.0 mg/L USP 1,4-Benzoquinone Rss in 40 mL vials.                                                                                                                                                  |               | business days              |
|                                                                                                                                                                                                                        | Cat.#         | Availability               |
| Rss in 40 mL vials.                                                                                                                                                                                                    | <b>Cat.</b> # | •                          |
| Rss in 40 mL vials.  Sets - JP  JP System Suitability Set Includes (1) Reagent Water, and (1) 0.50 mg/L C from                                                                                                         |               | Availability  Ships in 5   |

| Calibration & Cleaning Validation |                             |  |
|-----------------------------------|-----------------------------|--|
| Cat.#                             | Availability                |  |
| 19901                             | Ships in 5<br>business days |  |
| 19970                             | Ships in 5<br>business days |  |
| 19985                             | Ships in 5<br>business days |  |
|                                   | Cat. # 19901 19970          |  |

Individual set/kit components and/or bulk sizes may be available for the TOC and Conductivity standards. Please contact your Waters ERA sales representative if you have questions about any products that are not listed in this publication.

**Anne Lang Customer Service** Representative





Dale Shallenberger Senior Buyer

## OI ANALYTICAL

The Certified Reference Materials (CRMs) listed below are commonly purchased for use with OI Analytical TOC instruments, including the very popular Aurora® model. All Waters ERA Certified Reference Materials (CRMs) are prepared using carefully controlled processes that are scrutinized under Waters ERA's ISO 17034 accreditation.

The following CRMs are designed to use on OI Analytical TOC instruments for calibration, validation, and to satisfy regulatory requirements.

| System Suitability                                                                                                                                                    |        |                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------|
| Sets - USP/EP                                                                                                                                                         | Cat.#  | Availability                |
| USP/EP Bulk Water System<br>Suitability Set<br>Includes (1) Reagent Water Rw, (1) 0.5 mg/L C USP<br>Sucrose, and (1) 0.5 mg/L USP 1,4-Benzoquinone in<br>40 mL vials. | 18004  | Ships in 1<br>business day  |
| Sets - USP                                                                                                                                                            | Cat.#  | Availability                |
| USP Sterile Water System Suitability Set Includes (1) Reagent Water Rw, (1) 8.0 mg/L C USP Sucrose Rs, and (1) 8.0 mg/L USP 1,4-Benzoquinone Rss in 40 mL vials.      | 18061  | Ships in 5<br>business days |
| Sets - JP                                                                                                                                                             | Cat.#  | Availability                |
| JP System Suitability Set<br>Includes (1) Reagent Water, and (1) 0.50 mg/L C from<br>Sodium Dodecylbenzene Sulfonate in 40 mL vials.                                  | 18000J | Ships in 5<br>business days |

| Calibration & Validation                                                                                                                                                                                                                                                                                                                |       |                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------|
| Kits                                                                                                                                                                                                                                                                                                                                    | Cat.# | Availability                |
| Ultra Low-Level CRMs Kit<br>Includes (3) Calibration Blanks, (1) each 0.050 mg/L,<br>0.060 mg/L, 0.070 mg/L, 0.080 mg/L, 0.090 mg/L,<br>0.10 mg/L, 0.25 mg/L, 0.50 mg/L, and 1.0 mg/L C<br>NIST KHP in 40 mL vials.                                                                                                                     | 14203 | Ships in 5<br>business days |
| Validation Set – Aurora Includes (6) Water Blanks, (1) 0.50 mg/L C NIST KHP, (3) 1.0 mg/L C NIST KHP, (1) 5.0 mg/L C NIST KHP, (1) 10.0 mg/L C NIST KHP, (1) 25.0 mg/L C NIST KHP, (1) 5.0 mg/L C NIST KHP/50.0 mg/L IC NIST NaHCO <sub>3</sub> , (4) 0.50 mg/L C USP Sucrose, and (1) 0.50 mg/L C USP 1,4-Benzoquinone in 40 mL vials. | 19007 | Ships in 5<br>business days |
|                                                                                                                                                                                                                                                                                                                                         |       |                             |

Aurora is a registered trademark of Xylem, Incorporated.

| Consumables                            |       |                             |
|----------------------------------------|-------|-----------------------------|
| Kits                                   | Cat.# | Availability                |
| Phosphoric Acid Reagent (1 Liter)*     | 21016 | Ships in 5<br>business days |
| Phosphoric Acid Reagent (2 Liter)*     | 21018 | Ships in 5<br>business days |
| Persulfate Oxidizer Reagent (1 Liter)* | 21017 | Ships in 5<br>business days |
| Persulfate Oxidizer Reagent (2 Liter)* | 21019 | Ships in 5<br>business days |

\*Dangerous goods.

Individual set/kit components and/or bulk sizes may be available for the TOC and Conductivity standards. Please contact your Waters ERA sales representative if you have questions about any products that are not listed in this publication.



**Paul Fabrizio** Systems Engineer



From Your Trusted Environmental Partner

Turbidity and total organic carbon (TOC) are two key indicators in the measurement of water quality. Whether it is environmental testing or municipal drinking water testing, accurate measurement of turbidity and TOC help ensure compliance with government regulations and are essential components of water treatment.

Ensure reliable water analyses.

Learn more at eraqc.com/processwater-products

## SHIMADZU

Certified Reference Materials (CRMs) listed are commonly purchased for use with Shimadzu TOC instruments. *Please specify at time of order whether you have a chemical or combustion Shimadzu TOC*. All of our Shimadzu Certified Reference Materials (CRMs) are prepared using carefully controlled processes that are scrutinized under Waters ERA's ISO 17034 accreditation.

The following CRMs are designed to use on Shimadzu TOC instruments for calibration, validation, and to satisfy regulatory requirements.

| System Suitability                                                                                                                                                    |        |                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------|
| Sets - USP/EP                                                                                                                                                         | Cat.#  | Availability                |
| USP/EP Bulk Water System<br>Suitability Set<br>Includes (1) Reagent Water Rw, (1) 0.5 mg/L C USP<br>Sucrose, and (1) 0.5 mg/L USP 1,4-Benzoquinone in<br>40 mL vials. | 18000  | Ships in 1<br>business day  |
| Sets - USP                                                                                                                                                            | Cat.#  | Availability                |
| USP Sterile Water System Suitability Set Includes (1) Reagent Water Rw, (1) 8.0 mg/L C USP Sucrose Rs, and (1) 8.0 mg/L USP 1,4-Benzoquinone Rss in 40 mL vials.      | 18061  | Ships in 5<br>business days |
| Sets - JP                                                                                                                                                             | Cat.#  | Availability                |
| JP System Suitability Set<br>Includes (1) Reagent Water, and (1) 0.50 mg/L C from<br>Sodium Dodecylbenzene Sulfonate in 40 mL vials.                                  | 18000J | Ships in 5<br>business days |
| Sets - Low-Level System Suitability                                                                                                                                   | Cat.#  | Availability                |
| Low-Level System Suitability Set<br>Includes (1) Reagent Water, (1) 0.30 mg/L<br>C USP Sucrose, and (1) 0.30 mg/L C USP<br>1,4-Benzoquinone in 40 mL vials.           | 18040  | Ships in 5<br>business days |

| Calibration & Validation                                                                                                                                                                   |       |                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------|
| Kits                                                                                                                                                                                       | Cat.# | Availability                |
| TOC-V and TOC-L Validation Kit<br>Includes (1) Water Blank, and (2) 100.0 mg/L<br>C NIST KHP in 125 mL amber glass bottles.                                                                | 11002 | Ships in 5<br>business days |
| TOC-V and TOC-L HS Validation Kit<br>Includes (1) Water Blank, and (2) 10.0 mg/L<br>C NIST KHP in 125 mL amber glass bottles.                                                              | 11003 | Ships in 5<br>business days |
| TOC-V and TOC-L Wet Chem<br>Validation Kit<br>Includes (3) Water Blanks, (2) 0.50 mg/L C NIST KHP,<br>and (4) 1.0 mg/L C NIST KHP in 40 mL vials.                                          | 11004 | Ships in 5<br>business days |
| TOC-V and TOC-L Multi Calibration Kit Includes (2) Calibration Blanks, (2) each 0.10 mg/L, 0.25 mg/L, 0.50 mg/L C NIST KHP, and (1) each 0.75 mg/L and 1.0 mg/L C NIST KHP in 40 mL vials. | 11005 | Ships in 5<br>business days |

| Consumables                            |       |                             |
|----------------------------------------|-------|-----------------------------|
| Kits                                   | Cat.# | Availability                |
| Phosphoric Acid Reagent (1 Liter)*     | 21016 | Ships in 5<br>business days |
| Phosphoric Acid Reagent (2 Liter)*     | 21018 | Ships in 5<br>business days |
| Persulfate Oxidizer Reagent (1 Liter)* | 21017 | Ships in 5<br>business days |
| Persulfate Oxidizer Reagent (2 Liter)* | 21019 | Ships in 5<br>business days |

<sup>\*</sup>Dangerous goods.

Individual set/kit components and/or bulk sizes may be available for the TOC and Conductivity standards. Please contact your Waters ERA sales representative if you have questions about any products that are not listed in this publication.



**Loretta Baca** Customer Service Representative

## TELEDYNE TEKMAR

All of our Teledyne Tekmar Certified Reference Materials (CRMs) are prepared using carefully controlled processes that are scrutinized under Waters ERA's ISO 17034 accreditation.

The following CRMs are designed to use on Teledyne Tekmar TOC instruments for calibration, validation, and to satisfy regulatory requirements.

| System Suitability                                                                                                                                                        |        |                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------|
| Sets - USP/EP                                                                                                                                                             | Cat.#  | Availability                |
| USP/EP Bulk Water System<br>Suitability Set<br>Includes (1) Reagent Water Rw, (1) 0.5 mg/L C USP<br>Sucrose, and (1) 0.5 mg/L USP 1,4-Benzoquinone in<br>40 mL vials.     | 18000  | Ships in 1<br>business day  |
| Sets - USP                                                                                                                                                                | Cat.#  | Availability                |
| USP Sterile Water System Suitability Set<br>Includes (1) Reagent Water Rw, (1) 8.0 mg/L C USP<br>Sucrose Rs, and (1) 8.0 mg/L USP 1,4-Benzoquinone<br>Rss in 40 mL vials. | 18061  | Ships in 5<br>business days |
| Sets - JP                                                                                                                                                                 | Cat.#  | Availability                |
| JP System Suitability Set<br>Includes (1) Reagent Water, and (1) 0.50 mg/L C from<br>Sodium Dodecylbenzene Sulfonate in 40 mL vials.                                      | 18000J | Ships in 5<br>business days |
| Sets - Low-Level System Suitability                                                                                                                                       | Cat.#  | Availability                |
| Low-Level System Suitability Set<br>Includes (1) Reagent Water, (1) 0.30 mg/L<br>C USP Sucrose, and (1) 0.30 mg/L C USP<br>1,4-Benzoquinone in 40 mL vials.               | 18040  | Ships in 5<br>business days |

| Calibration & Validation                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------|
| Kits                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Cat.# | Availability                |
| Ultra Low-Level CRMs Kit Includes (3) Calibration Blanks, and (1) each 0.050 mg/L, 0.060 mg/L, 0.070 mg/L, 0.080 mg/L, 0.090 mg/L, 0.10 mg/L, 0.25 mg/L, 0.50 mg/L, and 1.0 mg/L C NIST KHP in 40 mL vials.                                                                                                                                                                                                                                                             | 14203 | Ships in 5<br>business days |
| Validation Set – Phoenix Includes (2) Water Blanks, (3) 0.50 mg/L C NIST KHP, (6) 1.0 mg/L C NIST KHP, (1) 2.0 mg/L C NIST KHP, (1) 5.0 mg/L C NIST KHP, (1) 50.0 mg/L C NIST KHP, (1) 100 mg/L IC NIST NaHCO <sub>3</sub> , (1) Reagent Water Rw, (1) 0.50 mg/L C USP Sucrose Rs, and (1) 0.50 mg/L C USP 1,4-Benzoquinone Rss in 40 mL vials.                                                                                                                         | 19002 | Ships in 5<br>business days |
| Validation Set – Phoenix Includes (5) Water Blanks, (1) 0.50 mg/L C NIST KHP, (5) 1.0 mg/L C NIST KHP, (1) 5.0 mg/L C NIST KHP, (1) 50.0 mg/L C NIST KHP, (1) 1.0 mg/L IC NIST NaHCO <sub>3</sub> , (1) Reagent Water Rw, (1) 0.50 mg/L C USP Sucrose Rs, and (1) 0.50 mg/L C USP 1,4-Benzoquinone Rss in 40 mL vials.                                                                                                                                                  | 19003 | Ships in 5<br>business days |
| Validation Set – Fusion Includes 15 x 40 mL vials & 2 125 mL bottles: (4) TOC Blank, (3) 1.00 mg C/L NIST KHP, (1) 10.0 mg C/L NIST KHP, (1) 25.0 mg IC/L NaHCO <sub>3</sub> , (1) Reagent Water Rw, (1) 0.500 mg/L C from USP Sucrose Rs, (1) 0.500 mg/L C from USP 1,4-Benzoquinone Rss, (1) Reagent Water Rw, (1) 8.0 mg/L C from USP Sucrose Rs, (1) 8.0 mg/L C from USP 1,4-Benzoquinone Rss, (1) 10.0 mg C/L NIST KHP - 125 mL, (1) 5.00 mg C/L NIST KHP - 125 mL | 19004 | Ships in 5<br>business days |

| Consumables                           |       |                             |
|---------------------------------------|-------|-----------------------------|
| Reagents                              | Cat.# | Availability                |
| Phosphoric Acid Reagent (1 Liter)*    | 21016 | Ships in 5<br>business days |
| Phosphoric Acid Reagent (2 Liter)*    | 21018 | Ships in 5<br>business days |
| Persulfate Oxidizer Reagent (1 Liter) | 21017 | Ships in 5<br>business days |
| Persulfate Oxidizer Reagent (2 Liter) | 21019 | Ships in 5<br>business days |

<sup>\*</sup>Dangerous goods.

Individual set/kit components and/or bulk sizes may be available for the TOC and Conductivity standards. Please contact your Waters ERA sales representative if you have questions about any products that are not listed in this publication.

Waters ERA is making the most commonly requested products available within 24 hours of order receipt to consistently meet your product needs. Products that are less frequently requested will be shipped within five business days of order receipt. Please check your order confirmation for the specific ship date.

Phoenix and Fusion are registered trademarks of Teledyne Technologies Incorporated.

## OTHER TOC INSTRUMENTS

All of our Certified Reference Materials (CRMs) are prepared using carefully controlled processes that are scrutinized under Waters ERA's ISO 17034 accreditation.

The following CRMs are designed to use on various brands of TOC instruments for calibration and to satisfy regulatory requirements.

If you do not see your brand of TOC instrument listed below, please contact us for availability.

#### **Swan Analytical and Comet Analytics**

| System Suitability                                                                                                                                                               |       |                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------|
| Sets - USP/EP                                                                                                                                                                    | Cat.# | Availability                |
| USP/EP Bulk Water System<br>Suitability Set<br>Includes (1) Reagent Water Rw, (1) 0.5 mg/L C USP<br>Sucrose, and (1) 0.5 mg/L USP 1,4-Benzoquinone in<br>250 mL HDPE containers. | 18055 | Ships in 5<br>business days |
| Sets - USP                                                                                                                                                                       | Cat.# | Availability                |
| USP Sterile Water System Suitability Set Includes (1) Reagent Water Rw, (1) 8.0 mg/L C USP Sucrose, and (1) 8.0 mg/L USP 1,4-Benzoquinone in 250 mL HDPE containers.             | 18056 | Ships in 5<br>business days |
| Sets - Low-Level System Suitability                                                                                                                                              | Cat.# | Availability                |
| Low-Level System Suitability Set<br>Includes (1) Reagent Water, (1) 0.30 mg/L C USP<br>Sucrose, and (1) 0.30 mg/L C USP 1,4-Benzoquinone<br>in 250 mL HDPE containers.           | 18059 | Ships in 5<br>business days |

| Calibration & Other                                                                                                           |        |                             |
|-------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------|
| Kits                                                                                                                          | Cat.#  | Availability                |
| Swan Calibration Kit<br>Includes (1) Calibration Blank and (1) 1.0 mg/L C<br>NIST Sucrose in 250 mL HDPE containers.          | 10035S | Ships in 5<br>business days |
| Swan Function Test Kit<br>Includes (1) 20.0 mg/L C Sucrose and (1) 20.0 mg/L<br>C 1,4-Benzoquinone in 125 mL HDPE containers. | 19700  | Ships in 5<br>business days |

| Calibration                                                                                                                              |       |                            |
|------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------|
| Kits                                                                                                                                     | Cat.# | Availability               |
| Calibration Kit Includes (1) Calibration Blank and (1) each 0.25 mg/L, 0.50 mg/L, and 0.75 mg/L C NIST Sucrose in 60 mL HDPE containers. | 19202 | Ships in 1<br>business day |

#### MembraPure

| System Suitability                                                                                                                                                              |       |                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------|
| Sets - USP/EP                                                                                                                                                                   | Cat.# | Availability                |
| USP/EP Bulk Water System<br>Suitability Set<br>Includes (1) Reagent Water Rw, (1) 0.5 mg/L C USP<br>Sucrose, and (1) 0.5 mg/L USP1,4-Benzoquinone in<br>500 mL HDPE containers. | 18140 | Ships in 5<br>business days |
| Individual - USP Sterile Water<br>(500 mL HDPE Container)                                                                                                                       | Cat.# | Availability                |
| USP Reagent Water (Rw)                                                                                                                                                          | 18144 | Ships in 5<br>business days |
| 8.0 mg/L C USP Sucrose (Rs)                                                                                                                                                     | 18147 | Ships in 5<br>business days |
| 8.0 mg/L C USP 1,4-Benzoquinone (Rss)                                                                                                                                           | 18148 | Ships in 5<br>business days |
|                                                                                                                                                                                 |       |                             |

| Calibration                                     |        |                            |
|-------------------------------------------------|--------|----------------------------|
| Individual Standards<br>(500 mL HDPE Container) | Cat. # | Availability               |
| Calibration Blank                               | 10110  | Ships in 1<br>business day |
| 0.5 mg/L C NIST Sucrose                         | 10710  | Ships in 1<br>business day |

Individual set/kit components and/or bulk sizes may be available for the TOC and Conductivity standards. Please contact your Waters ERA sales representative if you have questions about any products that are not listed in this publication.

## **CONSUMABLES**

Ever wonder what the USP means by: "Use labware and containers that have been scrupulously cleaned of organic residues"?

Just like the USP, we demand scrupulously cleaned vials for our TOC standards. All of our vials, whether glass or polymer, represent the most consistently clean sample vials available anywhere. They are the perfect vial for your purified water (PW) or water for injection (WFI) sample analysis.

We offer consumable products for various TOC instruments as detailed below.

| Vials and Bottles                                |       |                         |
|--------------------------------------------------|-------|-------------------------|
|                                                  | Cat.# | Availability            |
| 40mL Ultra-Low TOC Glass<br>Vials (80/case)      | 25025 | Ships in 1 business day |
| 60 mL Low TOC HDPE Bottle -<br>Natural (50/case) | 25056 | Ships in 1 business day |

#### **UV Lamps**

Replacement UV Lamps for ANATEL and Sievers models.

|                    | Cat.#  | Availability            |
|--------------------|--------|-------------------------|
| ANATEL A643/TOC600 | 20036A | Ships in 1 business day |
| ANATEL PAT700      | 20037  | Ships in 1 business day |
| Sievers 400/800    | 20040  | Ships in 1 business day |
| Sievers 500/900    | 20045  | Ships in 1 business day |

| Reagent Cartridges for Sievers                                                    |       |                          |  |
|-----------------------------------------------------------------------------------|-------|--------------------------|--|
|                                                                                   | Cat.# | Availability             |  |
| Phosphoric Acid Reagent<br>Cartridge for Sievers 800/900<br>(150 mL)*             | 21000 | Ships in 5 business days |  |
| Phosphoric Acid Reagent<br>Cartridge for Sievers 800/900<br>(300 mL)*             | 21001 | Ships in 5 business days |  |
| Persulfate Oxidizer Reagent<br>Cartridge for Sievers 800/900<br>(150 mL)          | 21005 | Ships in 5 business days |  |
| Persulfate Oxidizer Reagent<br>Cartridge for Sievers 800/900<br>(300 mL)          | 21006 | Ships in 5 business days |  |
| Sievers Ion Exchange Resin Bed                                                    | 20075 | Ships in 1 business day  |  |
| Sievers 900 Service Kit<br>Includes resin bed, UV lamp and<br>replacement tubing. | 20095 | Ships in 1 business day  |  |

<sup>\*</sup>Dangerous goods.

| Reagents                               |       |                          |
|----------------------------------------|-------|--------------------------|
|                                        | Cat.# | Availability             |
| Phosphoric Acid Reagent (1 Liter)*     | 21016 | Ships in 5 business days |
| Phosphoric Acid Reagent (2 Liter)*     | 21018 | Ships in 5 business days |
| Persulfate Oxidizer Reagent (1 Liter)* | 21017 | Ships in 5 business days |
| Persulfate Oxidizer Reagent (2 Liter)* | 21019 | Ships in 5 business days |

<sup>\*</sup>Dangerous goods

#### **Tubing**

Replacement Pump Tubing for Sievers models.

|             | Cat.# | Availability            |
|-------------|-------|-------------------------|
| Sievers 400 | 20055 | Ships in 1 business day |
| Sievers 800 | 20050 | Ships in 1 business day |
| Sievers 900 | 20060 | Ships in 1 business day |

| Filters                               |       |                          |
|---------------------------------------|-------|--------------------------|
|                                       | Cat.# | Availability             |
| 60 Micron In-Line<br>Stainless Filter | 25035 | Ships in 5 business days |
| Fan Filter for Sievers 800            | 25040 | Ships in 5 business days |



Learn more about Consumables

## **CLEANING VALIDATION**

Waters ERA is the premier manufacturer of specialty cleaning validation products – coupons, certified clean sample vials and swabs for swab recovery studies as well as kits that can be customized to suit your laboratory, analyst and validation needs.

| Sampling Kit with Vial and Swab                                                                                  |           |                          |
|------------------------------------------------------------------------------------------------------------------|-----------|--------------------------|
|                                                                                                                  | Cat.#     | Availability             |
| Vial and Swab Sampling<br>Kit - Small<br>Includes (20) certified clean swabs<br>and (10) certified clean vials.  | CV10000TX | Ships in 5 business days |
| Vial and Swab Sampling<br>Kit – Large<br>Includes (160) certified clean swabs<br>and (80) certified clean vials. | CV10005TX | Ships in 5 business days |

#### **Swabbing Templates**

Pre-cleaned Teflon\* square swabbing templates are a simple way to ensure accuracy and precision in your cleaning validation sampling. Each pack comes with a Certificate of Analysis for residual HPLC and TOC levels. Swabbing templates can be custom made to your needs. Stainless steel templates are available upon request. Call for pricing, availability, and custom sizing.

|                   | Cat.# | Availability      |
|-------------------|-------|-------------------|
| 16 cm² (25/pack)  | 30028 | Call for delivery |
| 25 cm² (25/pack)  | 30029 | Call for delivery |
| 100 cm² (25/pack) | 30032 | Call for delivery |

#### **Swabs**

Large polyester swabs with snap-off head for ultra-low interference levels.

|                                                                                       | Cat.#   | Availability             |
|---------------------------------------------------------------------------------------|---------|--------------------------|
| TOC Swabs<br>(< 50.0 ppb TOC)<br>Includes (20) swabs (1 total bag)                    | 30033TX | Ships in 5 business days |
| TOC Swabs<br>(< 50.0 ppb TOC)<br>Includes (100) swabs (20/bag,<br>5 total bags)       | 30031TX | Ships in 5 business days |
| HPLC Swabs<br>(Abs 254: 0.1 au max)<br>Includes (100) swabs (50/bag,<br>2 total bags) | 30030   | Ships in 5 business days |

#### **Custom Coupons**

Waters ERA can accommodate your custom requests for coupons of just about any size, shape or material. Please use the general catalog numbers below and provide the information at the bottom to your customer service representative.

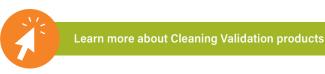
|         | Cat.# | Availability      |
|---------|-------|-------------------|
| Polymer | 30024 | Call for delivery |
| Metal   | 30025 | Call for delivery |
| Glass   | 30027 | Call for delivery |

Call 800.372.0122 or 303.431.8454 for a quote on your custom coupon needs in the U.S. Contact your sales partner or e-mail your inquiry to ERA\_Europe\_Sales@waters.com in Ireland. Please have the following information available:

Material Metal, plastic, rubber, or glass type (stainless steel, polyethylene, etc.).

Grade Specific grade of material (i.e., 316 stainless, HDPE or borosilicate glass).

Finish Arguably the most important factor for metals. The finish refers to the surface roughness


and is generally stated in units of "Ra". It is most often measured using a profilometer.

Coating Some materials can be coated to offer desirable surface properties.

Etching Some materials can be etched with serial numbers, swabbing areas or other information.

Dimensions Size and shape of the coupon.

Quantity The quantity of coupons needed.



## REFERENCE STANDARDS

#### Inorganic Carbon

All of Waters ERA's Certified Reference Materials (CRMs) are prepared using carefully controlled processes that are scrutinized under Waters ERA's ISO 17034 accreditation. Inorganic Carbon (IC) is derived from non-living sources and it exists in pharmaceutical waters as carbonate, bicarbonate, and dissolved carbon dioxide (CO<sub>2</sub>). Whether your instrument quantifies IC as part of a differential calculation or removes it as part of a "non-purgeable" method of TOC determination, your instrument's ability to remove and/or measure IC must be validated. Below are the most commonly requested IC concentrations for calibration and validation of TOC instrumentation.

| Individual CRMs for Inorganic Carbon      |        |       |                         |  |
|-------------------------------------------|--------|-------|-------------------------|--|
|                                           | Volume | Cat.# | Availability            |  |
| 0.5 mg/L IC from NIST NaHCO <sub>3</sub>  | 40 mL  | 15990 | Ships in 1 business day |  |
| 1.0 mg/L IC from NIST NaHCO <sub>3</sub>  | 40 mL  | 16000 | Ships in 1 business day |  |
| 5.0 mg/L IC from NIST NaHCO <sub>3</sub>  | 40 mL  | 16300 | Ships in 1 business day |  |
| 10.0 mg/L IC from NIST NaHCO <sub>3</sub> | 40 mL  | 16600 | Ships in 1 business day |  |
| 25.0 mg/L IC from NIST NaHCO <sub>3</sub> | 40 mL  | 16900 | Ships in 1 business day |  |
| 50.0 mg/L IC from NIST NaHCO <sub>3</sub> | 40 mL  | 17130 | Ships in 1 business day |  |

Bulk sizes may be available for the Inorganic Carbon standards. Please contact your sales representative if you have questions about any products that are not listed in this publication.

We make the most commonly requested products available within 24 hours of order receipt to consistently meet your product needs. Products that are less frequently requested will be shipped within five business days of order receipt. Please check your order confirmation for the specific ship date.

#### **Turbidity**

Turbidity products are designed specifically for pharmaceutical turbidimetric validation, calibration and monitoring applications including performing particle content/concentration testing, monitoring for fermentation progress, or filter break monitoring.

Custom turbidity products are available if you need a standard. Please contact us to inquire about custom turbidity reference materials.

## REFERENCE STANDARDS

#### High-Purity Water

Certified Low-TOC Water suitable for use with your TOC or liquid chromatography system. All of our waters are prepared with the highest level of care throughout the Ion-Exchange-Filtration-RO-UV purification process. Our water must pass a rigorous testing scheme and we guarantee the analysis of each bottle as well as your satisfaction.

| USP Purified - Certified Low-TOC Water        |         |                          |
|-----------------------------------------------|---------|--------------------------|
|                                               | Cat.#   | Availability             |
| USP Purified Low-TOC Water – 4 Liter          | PW10000 | Ships in 5 business days |
| USP Purified Low-TOC Water – 4 x 4 Liter Case | PW10005 | Ships in 5 business days |

#### pH Buffers

Three color-coded pH Buffers that are prepared under our ISO 17034 accreditation. The buffers are mercury free, guaranteed stable for one year, and they are analytically traceable to NIST Standard Reference Materials (SRMs). Waters ERA pH Buffers are designed for routine calibration and/or verification of pH meters and they are supplied with a full certificate of analysis.

| pH Buffer Products in 500 mL HDPE Containers |       |                         |  |
|----------------------------------------------|-------|-------------------------|--|
|                                              | Cat.# | Availability            |  |
| pH 4 (Red) 1 Bottle                          | 127   | Ships in 1 business day |  |
| pH 4 (Red) Case of 6 Bottles                 | 128   | Ships in 1 business day |  |
| pH 7 (Yellow) 1 Bottle                       | 131   | Ships in 1 business day |  |
| pH 7 (Yellow) Case of 6 Bottles              | 132   | Ships in 1 business day |  |
| pH 10 (Blue) 1 Bottle                        | 135   | Ships in 1 business day |  |
| pH 10 (Blue) Case of 6 Bottles               | 136   | Ships in 1 business day |  |
| (2) Each of pH 4, pH 7, and pH 10            | 141   | Ships in 1 business day |  |

For other pH buffers please contact us at 800.372.0122 and inquire about our custom pH buffers or our line of environmental reagents.



## CONDUCTIVITY

Conductivity solutions and kits that support accurate, verifiable, and approved approaches to validating/verifying your conductivity sensors. Whether you are validating detection limits, determining accuracy and precision, or constructing a low-level linearity curve, Waters ERA has the conductivity products and services to support your efforts.

All Waters ERA Conductivity standards are manufactured in a water matrix , and are scrutinized under Waters ERA's ISO 17034 accreditation.

| Conductivity Kits                                                                                                                                                                     |       |                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------------|
|                                                                                                                                                                                       | Cat.# | Availability             |
| Conductivity Validation Kit – Multiple Use Includes (1) 25 µS/cm, (1) 100 µS/cm, (1) 146.93 µS/cm (Solution D), and (1) Reagent Blank for use with Solution D in 500 mL HDPE bottles. | 02900 | Ships in 5 business days |
| Solution 25 Test Kit<br>Includes (1) 25 µS/cm standard<br>in a 500 mL HDPE bottle and<br>(5) pre-cleaned 125 mL HDPE<br>wide-mouth bottles.                                           | 01100 | Ships in 1 business day  |
| Solution 25 Test Kit Includes (1) 25 µS/cm standard in a 1 Liter HDPE bottle and (5) pre-cleaned 125 mL HDPE wide-mouth bottles.                                                      | 01001 | Ships in 1 business day  |

#### **Low-Level Conductivity (in HDPE bottles)**

Our Low-Level conductivity is an excellent verification solution once you have calibrated your system using our ASTM Solution D.

|                    | Cat.# | Availability             |
|--------------------|-------|--------------------------|
| 25 μS/cm (500 mL)  | 01300 | Ships in 5 business days |
| 25 μS/cm (1 Liter) | 01200 | Ships in 5 business days |

#### Mid-Level Conductivity (in HDPE bottles)

Manufactured using NIST traceable materials and certified. This potassium chloride (KCI) solution is an excellent calibration or calibration verification solution. This solution is certified by analysis and it does not require the use of a reference blank for accurate calibration or validation.

|                       | Cat.# | Availability             |
|-----------------------|-------|--------------------------|
| 100 μS/cm (125 mL)    | 02600 | Ships in 5 business days |
| 100 μS/cm (250 mL)    | 02250 | Ships in 5 business days |
| 100 μS/cm in (500 mL) | 02500 | Ships in 5 business days |
| 100 μS/cm (1 Liter)   | 02400 | Ships in 5 business days |

### Mid-Level Conductivity ASTM Solution D (in HDPE bottles)

ASTM Solution D is the lowest level solution that can be made following a NIST protocol for conductivity solution preparations. This standard makes an excellent calibration or verification solution together with our 25  $\mu$ S/cm solution. All Solution D products include an associated Reference Blank.

|                                                                                                                                              | Cat.# | Availability             |
|----------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------------|
| Solution D at 146.93 μS/cm<br>(1 Liter)                                                                                                      | 01700 | Ships in 5 business days |
| Solution D at 146.93 µS/cm<br>(500 mL)                                                                                                       | 01800 | Ships in 5 business days |
| Solution D at 146.93 μS/cm<br>(125 mL)                                                                                                       | 01900 | Ships in 5 business days |
| Solution D Test Kit (1 Liter)<br>Includes (1) Solution D, (1) Reference<br>Blank, and (20) pre-cleaned 125 mL<br>wide-mouth HDPE containers. | 01500 | Ships in 5 business days |
| Solution D Test Kit (500 mL)<br>Includes (1) Solution D, (1) Reference<br>Blank, and (10) pre-cleaned 125 mL<br>wide-mouth HDPE containers.  | 01600 | Ships in 5 business days |

## CONDUCTIVITY (continued)

#### **High-Level Conductivity (in HDPE bottles)**

ASTM Solutions C and D are prepared prescriptively from KCl and offer superior accuracy at mid- to high-levels for conductivity sensor validation and verification.

|                                              | Cat.# | Availability             |
|----------------------------------------------|-------|--------------------------|
| ASTM Solution C at<br>1408.8 µS/cm (125 mL)  | 01610 | Ships in 5 business days |
| ASTM Solution C at<br>1408.8 µS/cm (1 Liter) | 01620 | Ships in 5 business days |
| 1000 μS/cm (125 mL)                          | 01410 | Ships in 5 business days |
| 1000 μS/cm (500 mL)                          | 01420 | Ships in 5 business days |
| 1000 μS/cm (1 Liter)                         | 01430 | Ships in 5 business days |
| 10,000 μS/cm (125 mL)                        | 01630 | Ships in 5 business days |
| 10,000 μS/cm (1 Liter)                       | 01640 | Ships in 5 business days |
| 100,000 μS/cm (125 mL)                       | 01650 | Ships in 5 business days |
| 100,000 μS/cm (500 mL)                       | 01655 | Ships in 5 business days |
| 100,000 μS/cm (1 Liter)                      | 01660 | Ships in 5 business days |
| 200,000 μS/cm (125 mL)                       | 01661 | Ships in 5 business days |
| 200,000 μS/cm (500 mL)                       | 01662 | Ships in 5 business days |
| 300,000 μS/cm (125 mL)*                      | 01663 | Ships in 5 business days |
| 300,000 μS/cm (500 mL)*                      | 01664 | Ships in 5 business days |
| 400,000 μS/cm (125 mL)*                      | 01665 | Ships in 5 business days |
| 400,000 μS/cm (500 mL)*                      | 01666 | Ships in 5 business days |
| 500,000 μS/cm (125 mL)*                      | 01667 | Ships in 5 business days |
| 500,000 μS/cm (500 mL)*                      | 01668 | Ships in 5 business days |

<sup>\*</sup>Dangerous goods.



## WATERS ERA GLOBAL DISTRIBUTORS AND SALES PARTNERS

Waters ERA currently serves customers in more than 80 countries through an extensive network of knowledgeable distributors and sales partners. Please visit <a href="mailto:eraqc.com/globalpartners">eraqc.com/globalpartners</a> to find the name of an authorized distributor in your area or country. Click on the Global Sales Partner link in the About Waters ERA pull down menu. You may also request distributor information by sending an e-mail to <a href="mailto:ERA">ERA</a> Europe Sales@waters. <a href="mailto:com">com</a> in Europe or <a href="mailto:info@eraqc.com">info@eraqc.com</a> in the U.S. and the rest of the world. See our website for all of our best-in-class partners across the world.



#### Waters ERA Subscription Services

We can setup subscription orders to meet your specific needs if your internal quality control program requires regularly scheduled analyses for compliance monitoring or routine instrument maintenance. Subscriptions eliminate the need to place recurring orders. Products are delivered on a regular schedule and they will always be available when you need them. Some of the benefits include:

- Subscriptions can be designed to match your specific needs (e.g., weekly, monthly, etc.)
- Billing occurs for each individual shipment regardless of how you normally pay for vendor supplied materials
- Changes can be made if necessary during the length of the subscription
- You will have the maximum amount of expiration period for your required reference materials
- Subscriptions can be designed for custom products

Please contact Waters ERA to set up a subscription order or if you have any questions about these services.

**Sylvia Lowe** Senior International Customer Support





Nicole Cotta Director of International Channels

| Catalog<br>Number | Product Description                                              | Page     |
|-------------------|------------------------------------------------------------------|----------|
| 011               | Aluminum – 1000 mg/L, 125 mL                                     | 77       |
| 013               | Arsenic - 1000 mg/L, 125 mL                                      | 77       |
| 015               | Beryllium – 1000 mg/L, 125 mL                                    | 77       |
| 018               | Calcium – 1000 mg/L, 125 mL                                      | 77       |
| 019               | Chromium VI (hexavalent)<br>- 1000 mg/L, 125 mL                  | 77       |
| 020               | Total Chromium - 1000 mg/L, 125 mL                               | 77       |
| 021               | Cobalt - 1000 mg/L, 125 mL                                       | 77       |
| 022               | Copper - 1000 mg/L, 125 mL                                       | 77       |
| 023               | Iron – 1000 mg/L, 125 mL                                         | 77       |
| 024               | Lead - 1000 mg/L, 125 mL                                         | 77       |
| 025               | Magnesium – 1000 mg/L, 125 mL                                    | 77       |
| 026<br>027        | Manganese – 1000 mg/L, 125 mL<br>Mercury – 1000 mg/L, 125 mL     | 77<br>77 |
| 027               | Molybdenum – 1000 mg/L, 125 mL                                   | 77       |
| 029               | Nickel – 1000 mg/L, 125 mL                                       | 77       |
| 030               | Potassium – 1000 mg/L, 125 mL                                    | 77       |
| 031               | Selenium – 1000 mg/L, 125 mL                                     | 77       |
| 032               | Silicon – 1000 mg/L, 125 mL                                      | 77       |
| 033               | Silver - 1000 mg/L, 125 mL                                       | 77       |
| 034               | Sodium - 1000 mg/L, 125 mL                                       | 77       |
| 035               | Strontium – 1000 mg/L, 125 mL                                    | 77       |
| 036               | Thallium - 1000 mg/L, 125 mL                                     | 77       |
| 037               | Tin – 1000 mg/L, 125 mL                                          | 77       |
| 038               | Titanium – 1000 mg/L, 125 mL                                     | 77       |
| 039               | Vanadium – 1000 mg/L, 125 mL                                     | 77       |
| 040               | Zinc - 1000 mg/L, 125 mL                                         | 77       |
| 042               | Chemical Oxygen Demand (COD) - 1000 mg/L, 125 mL                 | 76       |
| 043               | Total Kjeldahl-Nitrogen (TKN) - 1000 mg/L, 125 mL                | 76       |
| 044               | Ammonia as Ammonia (NH <sub>3</sub> ) – 1000 mg/L, 125 mL        | 76       |
| 045               | Ammonia as Nitrogen (N) - 1000 mg/L, 125 mL                      | 76       |
| 046<br>047        | Bromide – 1000 mg/L, 125 mL<br>Chloride – 1000 mg/L, 125 mL      | 76<br>76 |
| 047               | Cyanide (free) – 1000 mg/L, 125 mL                               | 76       |
| 049               | Complex Cyanide<br>- 1000 mg/L, 125 mL                           | 76       |
| 050               | Fluoride – 1000 mg/L, 125 mL                                     | 76       |
| 051               | Nitrate as Nitrate (NO <sub>3</sub> )<br>- 1000 mg/L, 125 mL     | 76       |
| 052               | Nitrate as Nitrogen (N)<br>- 1000 mg/L, 125 mL                   | 76       |
| 053               | Nitrite as Nitrogen (N)<br>- 1000 mg/L, 125 mL                   | 76       |
| 057               | Metals & Cyanide Blank Soil                                      | 43       |
| 058               | Metals & Cyanide Blank Sand                                      | 43       |
| 060               | Phosphate as Phosphate (PO <sub>4</sub> )<br>- 1000 mg/L, 125 mL | 76       |
| 061               | Phosphate as Phosphorous (P)<br>- 1000 mg/L, 125 mL              | 76       |
| 062               | Sulfate - 1000 mg/L, 125 mL                                      | 76       |
| 063               | Phosphorus – 1000 mg/L, 125 mL                                   | 77       |
| 064               | Silica - 1000 mg/L, 125 mL                                       | 77       |
| 065               | Bromate - 1000 mg/L, 125 mL                                      | 76       |
| 066               | Chlorate – 1000 mg/L, 125 mL                                     | 76       |
| 067               | Chlorite – 1000 mg/L, 125 mL                                     | 76       |
| 068<br>070        | Perchlorate – 1000 mg/L, 125 mL<br>Color                         | 76<br>13 |
| 070<br>070QR      | Color                                                            | 13       |
| 070Qh<br>071      | Sulfide                                                          | 13       |
| 071QR             | Sulfide                                                          | 13       |
| 077               | Massachusetts Ground                                             | 34       |
| 0//               | Water Enterococci                                                | 34       |

| Ostalan           |                                                     |          |
|-------------------|-----------------------------------------------------|----------|
| Catalog<br>Number | Product Description                                 | Page     |
| 078               | Source Water Microbe                                | 34       |
| 078QR             | Source Water Microbe                                | 34       |
| 078A              | Source Water Microbe - 9221                         | 34       |
| 078AQR            | Source Water Microbe - 9221                         | 34       |
| 079               | Heterotrophic Plate Count                           | 34       |
| 080               | Potable Water Coliform Microbe                      | 34       |
| 081               | Enterococci                                         | 34       |
| 083               | Wastewater Coliforms                                | 34       |
| 083A<br>084       | Wastewater Coliform Microbe - 9221                  | 34       |
| 084QR             | Heterotrophic Plate Count Heterotrophic Plate Count | 34       |
|                   | Potable Water Coliform Microbe                      | 34       |
| 085QR<br>127      | (Only available as QR)<br>pH 4 Pt                   | 78       |
| 128               | pH 4 Pt - cs of 6                                   | 78       |
| 131               | pH 7 Pt                                             | 78       |
| 132               | pH 7 Pt – cs of 6                                   | 78       |
| 135               | pH 10 Pt                                            | 78       |
| 136               | pH 10 Pt - cs of 6                                  | 78       |
| 141               | pH 4, 7, 10 Pt - cs of 6                            | 78       |
| 160               | Metals in Sewage Sludge                             | 38       |
| 160QR             | Metals in Sewage Sludge                             | 38       |
| 212               | Dissolved Oxygen                                    | 13       |
| 213               | Dissolved Oxygen                                    | 13       |
| 213QR             | Dissolved Oxygen                                    | 13       |
| 241               | Solids                                              | 10       |
| 244               | Sulfite                                             | 13       |
| 271               | Glycols in Water                                    | 16       |
| 272               | 1,4-Dioxane                                         | 27       |
| 401               | Glycols in Water                                    | 16       |
| 401QR             | Glycols in Water                                    | 16       |
| 402               | 1,4-Dioxane                                         | 14       |
| 402QR             | 1,4-Dioxane                                         | 14       |
| 403<br>403QR      | PFAS - Non Potable Water PFAS - Non Potable Water   | 15<br>15 |
| 461               | 1,4-Dioxane                                         | 39       |
| 462               | Per-and Polyfluoroalkyl                             | 41       |
| 463               | Substances (PFAS) in Soil<br>Glycols in Soil        | 41       |
| 464               | New Jersey EPH in Soil                              | 50       |
| 467               | Base/Neutrals & Acids in Soil                       | 41       |
| 468               | Organochlorine Pesticides in Soil                   | 43       |
| 469QR             | Alaska GRO in Soil<br>(Only available as QR)        | 49       |
| 470QR             | Alaska BTEX in Soil                                 | 49       |
| •                 | (Only available as QR) Alaska DRO in Soil           |          |
| 471QR             | (Only available as QR)                              | 49       |
| 472QR             | Alaska RRO in Soil<br>(Only available as QR)        | 49       |
| 473QR             | Alaska GRO in Water<br>(Only available as QR)       | 49       |
| 474QR             | Alaska BTEX in Water<br>(Only available as QR)      | 49       |
| 475QR             | Alaska DRO in Water<br>(Only available as QR)       | 49       |
| 476               | Texas Low-Level Fuels<br>(TPH) in Water             | 49       |
| 477               | Texas High-Level Fuels<br>(TPH) in Water            | 49       |
| 478               | Texas Low-Level Fuels<br>(TPH) in Soil              | 49       |
| 479               | Texas High-Level Fuels<br>(TPH) in Soil             | 49       |
| 481               | Massachusetts VPH in Water                          | 50       |
| 400               | Managelessatta EDIT in Water                        | F0       |

50

| Catalog<br>Number | Product Description                 | Page     |
|-------------------|-------------------------------------|----------|
| 483               | Massachusetts VPH in Soil           | 50       |
| 484               | Massachusetts EPH in Soil           | 50       |
| 487               | Nitrogen Pesticides                 | 17       |
| 488               | Arizona TPH in Soil                 | 49       |
| 489               | HEM/SGT-HEM                         | 11       |
| 490               | PCBs in Soil - 1242 Low             | 42       |
| 491               | PCBs in Soil – 1242 High            | 42       |
| 492               | PCBs in Soil – 1254 Low             | 42       |
| 493               | PCBs in Soil – 1254 High            | 42       |
| 494               | PCBs in Soil – 1260 Low             | 42       |
| 495               | PCBs in Soil – 1260 High            | 42       |
| 496               | PCBs in Soil – 1248 Low             | 42       |
| 497               | PCBs in Soil – 1248 High<br>Solids  | 42<br>10 |
| 499<br>499QR      | Solids                              | 10       |
| 500               | Trace Metals                        | 12       |
| 500QR             | Trace Metals                        | 12       |
| 501               | Total Residual Chlorine (TRC)       | 14       |
| 501QR             | Total Residual Chlorine (TRC)       | 14       |
| 502               | Cyanide & Phenol                    | 13       |
| 502QR             | Cyanide & Phenol                    | 13       |
| 504               | Oil & Grease                        | 11       |
| 505               | Simple Nutrients                    | 10       |
| 505QR             | Simple Nutrients                    | 10       |
| 506               | Minerals                            | 10       |
| 506QR             | Minerals                            | 10       |
| 507               | Hardness                            | 10       |
| 507QR             | Minerals                            | 10       |
| 508               | Flame AA Trace Metals               | 78       |
| 514               | Mercury                             | 12       |
| 514QR             | Mercury                             | 12       |
| 515               | Total Phenolics (4-AAP)             | 13       |
| 515QR             | Total Phenolics (4-AAP)             | 13       |
| 516               | Demand                              | 12       |
| 516QR             | Demand                              | 12       |
| 517               | Tin & Titanium                      | 12       |
| 517QR             | Tin & Titanium                      | 12       |
| 518               | 1 Liter Oil & Grease                | 11       |
| 518QR             | 1 Liter Oil & Grease                | 11       |
| 518QR             | 1 Liter Boston Round Oil & Grease   | 11       |
| 519               | HEM/SGT-HEM                         | 11       |
| 519QR             | HEM/SGT-HEM                         | 11       |
| 524               | ICP Trace Metals                    | 78       |
| 525<br>525OP      | Complex Nutrients Complex Nutrients | 10       |
| 525QR<br>530      | Flame AA Cations                    | 78       |
| 534               | Sulfite                             | 13       |
| 534QR             | Sulfite                             | 13       |
| 538               | 1,4-Dioxane                         | 39       |
| 538QR             | 1,4-Dioxane                         | 39       |
| 540               | Metals in Soil                      | 38       |
| 540QR             | Metals in Soil                      | 38       |
| 541               | Cyanide in Soil                     | 39       |
| 541QR             | Cyanide in Soil                     | 39       |
| 542               | Nutrients in Soil                   | 39       |
| 542QR             | Nutrients in Soil                   | 39       |
| 543               | Anions in Soil                      | 39       |
| 543QR             | Anions in Soil                      | 39       |
| 544               | TCLP Metals in Soil                 | 38       |
| 544QR             | TCLP Metals in Soil                 | 38       |
| 545               | Nutrients in Sludge                 | 39       |
| 549               | Oil & Grease (O&G) in Soil          | 39       |
| 549QR             | Oil & Grease (O&G) in Soil          | 39       |

482

Massachusetts EPH in Water

| Catalog<br>Number | Product Description                                                         | Page     |
|-------------------|-----------------------------------------------------------------------------|----------|
| 551               | Mercury                                                                     | 24       |
| 552               | pH                                                                          | 26       |
| 555               | Hardness                                                                    | 24       |
| 556               | Cyanide                                                                     | 25       |
| 557               | Organic Carbon                                                              | 26       |
| 558               | o-Phosphate Nutrients                                                       | 25       |
| 562               | EDB/DBCP/TCP                                                                | 16       |
| 563               | PCBs in Oil PCBs in Oil                                                     | 42       |
| 563QR<br>564      | New Jersey EPH in Soil                                                      | 42<br>50 |
| 564OR             | New Jersey EPH in Soil                                                      | 50       |
| 566               | Massachusetts VPH in Water                                                  | 50       |
| 566QR             | Massachusetts VPH in Water                                                  | 50       |
| 567               | Massachusetts EPH in Water                                                  | 50       |
| 567QR             | Massachusetts EPH in Water                                                  | 50       |
| 568               | Massachusetts VPH in Soil                                                   | 50       |
| 568QR             | Massachusetts VPH in Soil                                                   | 50       |
| 569               | Massachusetts EPH in Soil                                                   | 50       |
| 569QR             | Massachusetts EPH in Soil                                                   | 50       |
|                   | Total Petroleum Hydrocarbons                                                | 40       |
| 570               | (TPH) in Soil #1 Total Petroleum Hydrocarbons                               | 40       |
| 571               | (TPH) in Soil #2 Total Petroleum Hydrocarbons (TPH)                         | 40       |
| 572QR             | in Soil #2 (Only available as QR)                                           | 40       |
| 573               | Tin & Titanium                                                              | 12       |
| 574               | Mercury                                                                     | 12       |
| 576               | Wastewater Coliform Microbe                                                 | 34       |
| 576A              | Wastewater Coliform<br>Microbe - 9221                                       | 34       |
| 577               | pH                                                                          | 14       |
| 578               | Demand                                                                      | 12       |
| 579               | Complex Nutrients                                                           | 10       |
| 580               | Hardness                                                                    | 10       |
| 581               | Minerals                                                                    | 10       |
| 582               | 1 Liter Boston Round Oil & Grease                                           | 11       |
| 582               | 1 Liter Oil & Grease                                                        | 11       |
| 584               | Simple Nutrients                                                            | 10       |
| 586               | Trace Metals                                                                | 12       |
| 587               | Total Residual Chlorine (TRC)                                               | 14       |
| 588               | Cyanide & Phenol                                                            | 13       |
| 589               | Total Phenolics (4-AAP)                                                     | 13       |
| 590               | Metals                                                                      | 24       |
| 591               | Inorganics                                                                  | 24       |
| 592               | Turbidity  Residual Chlorina                                                | 26       |
| 593<br>594        | Residual Chlorine<br>Nitrite                                                | 25       |
| 594<br>595        | Nitrite<br>Source Water Microbe                                             | 25<br>34 |
| 595<br>595A       | Source Water Microbe - 9221                                                 | 34       |
| 595A<br>596       | Low-Level 1,2,3-TCP                                                         | 30       |
| 597               | 1.4-Dioxane                                                                 | 14       |
| 598               | PFAS - Non Potable Water                                                    | 15       |
| 600               | Total Petroleum Hydrocarbons (TPH) in Water #1                              | 11       |
| 601               | Total Petroleum Hydrocarbons (TPH) in Water #2                              | 11       |
| 602QR             | Total Petroleum Hydrocarbons (TPH) in Water #1 (Only available as QR)       | 11       |
| 602QR             | Total Petroleum Hydrocarbons<br>(TPH) in Water #2<br>(Only available as QR) | 11       |
| 604               | Per-and Polyfluoroalkyl<br>Substances (PFAS) in Soil                        | 41       |

| Catalog<br>Number | Product Description                                      | Page |
|-------------------|----------------------------------------------------------|------|
| 604QR             | Per-and Polyfluoroalkyl<br>Substances (PFAS) in Soil     | 41   |
| 606               | Air Filter Radionuclides                                 | 62   |
| 606QR             | Air Filter Radionuclides                                 | 62   |
| 607               | Air Filter Gross Alpha/Beta                              | 62   |
| 607QR             | Air Filter Gross Alpha/Beta                              | 62   |
| 608               | Soil Radionuclides                                       | 62   |
| 608QR             | Soil Radionuclides                                       | 62   |
| 609               | Vegetation Radionuclides                                 | 62   |
| 609QR             | Vegetation Radionuclides                                 | 62   |
| 615               | Water Gross Alpha/Beta                                   | 63   |
| 615QR             | Water Gross Alpha/Beta                                   | 63   |
| 616               | Water Tritium                                            | 63   |
| 616QR             | Water Tritium Water Radionuclides                        | 63   |
| 617<br>617QR      | Water Radionuclides  Water Radionuclides                 | 63   |
| 619               | Metals in Sewage Sludge                                  | 38   |
| 620               | Metals in Soil                                           | 38   |
| 621               | Cyanide in Soil                                          | 39   |
| 623               | Volatiles in Soil                                        | 39   |
| 624               | PCBs in Soil                                             | 42   |
| 625               | Low-Level PAHs in Soil                                   | 41   |
| 626               | Chlorinated Acid<br>Herbicides in Soil                   | 42   |
| 627               | Toxaphene in Soil                                        | 43   |
| 628               | Chlordane in Soil                                        | 43   |
| 629               | TCLP Metals in Soil                                      | 38   |
| 630               | Gasoline Range Organics<br>(GRO) in Soil                 | 39   |
| 631               | Diesel Range Organics<br>(DRO) in Soil                   | 41   |
| 632               | Total Petroleum Hydrocarbons<br>(TPH) in Soil #1         | 40   |
| 633               | BTEX & MTBE in Soil                                      | 40   |
| 635               | Alaska GRO in Soil                                       | 49   |
| 636               | Alaska BTEX in Soil                                      | 49   |
| 637               | Alaska DRO in Soil                                       | 49   |
| 638               | Alaska RRO in Soil                                       | 49   |
| 640               | Gasoline Range Organics (GRO) in Water                   | 15   |
| 641               | Diesel Range Organics<br>(DRO) in Water                  | 16   |
| 642               | Total Petroleum Hydrocarbons (TPH) in Water #1           | 11   |
| 642               | Total Petroleum Hydrocarbons<br>(TPH) in Water #2        | 11   |
| 643               | BTEX & MTBE in Water                                     | 14   |
| 645               | Alaska GRO in Water                                      | 49   |
| 646               | Alaska BTEX in Water                                     | 49   |
| 647               | Alaska DRO in Water                                      | 49   |
| 648               | Wisconsin Diesel Range<br>Organics (DRO) in Water        | 50   |
| 649               | Wisconsin Gasoline Range<br>Organics (GRO/PVOC) in Water | 50   |
| 658               | Hexavalent Chromium                                      | 24   |
| 658QR             | Hexavalent Chromium                                      | 24   |
| 660               | Vanadium                                                 | 24   |
| 660QR             | Vanadium                                                 | 24   |
| 661               | Color                                                    | 26   |
| 661QR             | Color                                                    | 26   |
| 662               | UV 254 Absorbance                                        | 26   |
| 662QR             | UV 254 Absorbance                                        | 26   |
| 663               | Dioxin<br>Dioxin                                         | 30   |
| 663QR             | DIUXIII                                                  | 30   |

| Catalog<br>Number | Product Description                      | Page |
|-------------------|------------------------------------------|------|
| 665               | Organophosphorus<br>Pesticides (OPP)     | 17   |
| 665QR             | Organophosphorus<br>Pesticides (OPP)     | 17   |
| 666               | Mercury                                  | 24   |
| 666QR             | Mercury                                  | 24   |
| 667               | o-Phosphate Nutrients                    | 25   |
| 667QR             | o-Phosphate Nutrients                    | 25   |
| 669               | Organic Carbon                           | 26   |
| 669QR             | Organic Carbon                           | 26   |
| 670               | Total Organic Halides (TOX)              | 13   |
| 670QR             | Total Organic Halides (TOX)              | 13   |
| 674               | Nitrogen Pesticides                      | 17   |
| 674QR             | Nitrogen Pesticides                      | 17   |
| 676               | Chloral Hydrate                          | 25   |
| 676QR             | Chloral Hydrate                          | 25   |
| 677               | Low-Level Nitroaromatics<br>& Nitramines | 16   |
| 677QR             | Low-Level Nitroaromatics & Nitramines    | 16   |
| 682               | Low-Level 1,2,3-TCP                      | 30   |
| 682QR             | Low-Level 1,2,3-TCP                      | 30   |
| 683               | Unregulated Volatiles                    | 27   |
| 683QR             | Unregulated Volatiles                    | 27   |
| 684               | Haloacetic Acids (HAA)                   | 25   |
| 684QR             | Haloacetic Acids (HAA)                   | 25   |
| 689               | 1,4-Dioxane                              | 27   |
| 689QR             | 1,4-Dioxane                              | 27   |
| 690               | Semivolatiles #1                         | 30   |
| 690QR             | Semivolatiles #1                         | 30   |
| 691               | Semivolatiles #2 Herbicides              | 30   |
| 691QR             | Semivolatiles #2 Herbicides              | 30   |
| 692               | EDB/DBCP/TCP                             | 16   |
| 692QR             | EDB/DBCP/TCP                             | 16   |
| 693               | Hardness                                 | 24   |
| 693QR             | Hardness                                 | 24   |
| 694               | Potable Water Coliform Microbe           | 34   |
| 695               | Nitrite                                  | 25   |
| 695QR             | Nitrite                                  | 25   |
| 696               | Residual Chlorine                        | 25   |
| 696QR             | Residual Chlorine                        | 25   |
| 697               | Metals                                   | 24   |
| 697QR             | Metals                                   | 24   |
| 698               | Inorganics                               | 24   |
| 698QR             | Inorganics                               | 24   |
| 699               | Turbidity                                | 26   |
| 699QR             | Turbidity                                | 26   |
| 700               | Toxaphene                                | 28   |
| 700QR             | Toxaphene                                | 28   |
| 702               | Halomethanes (THMs)                      | 27   |
| 702QR             | Halomethanes (THMs)                      | 27   |
| 703               | Regulated Volatiles                      | 27   |
| 703QR             | Regulated Volatiles                      | 27   |
| 704               | Chlorinated Acid Herbicides              | 30   |
| 704QR             | Chlorinated Acid Herbicides              | 30   |
| 705               | Chlordane                                | 28   |
| 705QR             | Chlordane                                | 28   |
| 706               | EDB/DBCP/TCP                             | 30   |
| 706QR             | EDB/DBCP/TCP                             | 30   |
| 707               | Carbamate/Carbamoxyloxime Pesticides     | 28   |
| 707QR             | Carbamate/Carbamoxyloxime<br>Pesticides  | 28   |

| Catalog<br>Number | Product Description                                     | Page     |
|-------------------|---------------------------------------------------------|----------|
| 708               | PCBs as Decachlorobiphenyl                              | 30       |
| 708QR             | PCBs as Decachlorobiphenyl                              | 30       |
| 709               | Pesticides                                              | 28       |
| 709QR             | Pesticides                                              | 28       |
| 710               | Volatiles                                               | 14       |
| 710QR             | Volatiles                                               | 14       |
| 711               | Base/Neutrals                                           | 16       |
| 711QR             | Base/Neutrals                                           | 16       |
| 712               | Acids                                                   | 16       |
| 712QR             | Acids                                                   | 16       |
| 713               | Organochlorine Pesticides                               | 17       |
| 713QR             | Organochlorine Pesticides                               | 17       |
| 715               | Low-Level PAHs                                          | 16       |
| 715QR             | Low-Level PAHs                                          | 16       |
| 716               | Chlordane<br>Chlordane                                  | 17       |
| 716QR             | ooraa.io                                                | 17       |
| 717               | Toxaphene                                               | 17       |
| 717QR             | Toxaphene Chlorinated Acid Harbicides                   | 17       |
| 718<br>7190P      | Chlorinated Acid Herbicides Chlorinated Acid Herbicides | 15       |
| 718QR<br>721      | Volatiles in Soil                                       | 15<br>39 |
|                   | Volatiles in Soil                                       | 39       |
| 721QR<br>722      | Low-Level PAHs in Soil                                  | 41       |
| 722QR             | Low-Level PAHs in Soil                                  | 41       |
| 722Qh<br>723      | Chlorinated Acid                                        | 42       |
|                   | Herbicides in Soil<br>Chlorinated Acid                  |          |
| 723QR             | Herbicides in Soil                                      | 42       |
| 724               | Toxaphene in Soil                                       | 43       |
| 724QR             | Toxaphene in Soil                                       | 43       |
| 725               | Chlordane in Soil                                       | 43       |
| 725QR             | Chlordane in Soil                                       | 43       |
| 726               | PCBs in Soil                                            | 42       |
| 726QR             | PCBs in Soil                                            | 42       |
| 727               | Base/Neutrals & Acids in Soil                           | 41       |
| 727QR             | Base/Neutrals & Acids in Soil                           | 41       |
| 728               | Organochlorine Pesticides in Soil                       | 43       |
| 728QR             | Organochlorine Pesticides in Soil                       | 43       |
| 729S              | PCBs in Oil                                             | 15       |
| 729SQR            | PCBs in Oil                                             | 15       |
| 730               | TCLP Volatiles                                          | 40       |
| 730QR             | TCLP Volatiles PFAS Ground Water                        | 40       |
| 731               | & Surface Water                                         | 28       |
| 731QR             | PFAS Ground Water<br>& Surface Water                    | 28       |
| 732               | TCLP Organochlorine Pesticides                          | 40       |
| 732QR             | TCLP Organochlorine Pesticides                          | 40       |
| 734S              | PCBs in Water                                           | 15       |
| 734SQR            | PCBs in Water                                           | 15       |
| 735               | PFAS Drinking Water                                     | 28       |
| 735QR             | PFAS Drinking Water                                     | 28       |
| 737               | TCLP Semivolatiles                                      | 40       |
| 737QR             | TCLP Semivolatiles                                      | 40       |
| 739               | Simple Nutrients                                        | 18       |
| 740               | Trace Metals                                            | 18       |
| 741               | Complex Nutrients                                       | 18       |
| 743               | Demand                                                  | 18       |
| 750               | lodine-131                                              | 60       |
| 750QR             | lodine-131                                              | 60       |
| 751               | Naturals<br>Naturals                                    | 60       |
| 751QR             |                                                         |          |

| Catalog         | Product Description                                      | Page     |
|-----------------|----------------------------------------------------------|----------|
| Number          |                                                          |          |
| 752QR           | Tritium                                                  | 60       |
| 757             | Strontium-89/90<br>Strontium-89/90                       | 60       |
| 757QR<br>758    | Gamma Emitters                                           | 60       |
| 758OR           | Gamma Emitters                                           | 60       |
| 759             | Gross Alpha/Beta                                         | 60       |
| 759QR           | Gross Alpha/Beta                                         | 60       |
| 760             | BTEX & MTBE in Water                                     | 14       |
| 760QR           | BTEX & MTBE in Water                                     | 14       |
| 761             | BTEX & MTBE in Soil                                      | 40       |
| 761QR           | BTEX & MTBE in Soil                                      | 40       |
| 762             | Gasoline Range Organics<br>(GRO) in Water                | 15       |
| 762QR           | Gasoline Range Organics<br>(GRO) in Water                | 15       |
| 763             | Gasoline Range Organics<br>(GRO) in Soil                 | 39       |
| 763QR           | Gasoline Range Organics<br>(GRO) in Soil                 | 39       |
| 764             | Diesel Range Organics<br>(DRO) in Water                  | 16       |
| 764QR           | Diesel Range Organics<br>(DRO) in Water                  | 16       |
| 765             | Diesel Range Organics<br>(DRO) in Soil                   | 41       |
| 765QR           | Diesel Range Organics<br>(DRO) in Soil                   | 41       |
| 769             | Bromide                                                  | 14       |
| 769QR           | Bromide                                                  | 14       |
| 770             | Nitrite                                                  | 10       |
| 770QR           | Nitrite                                                  | 10       |
| 772             | Wisconsin Diesel Range Organics<br>(DRO) in Water        | 50       |
| 772QR           | Wisconsin Diesel Range Organics<br>(DRO) in Water        | 50       |
| 773             | Wisconsin Gasoline Range Organics (GRO/PVOC) in Water    | 50       |
| 773QR           | Wisconsin Gasoline Range<br>Organics (GRO/PVOC) in Water | 50       |
| 775             | Silica                                                   | 13       |
| 775QR           | Silica<br>Surfactants-MBAS                               | 13       |
| 776<br>776QR    | Surfactants-MBAS                                         | 13<br>13 |
| 770Q11<br>777   | Turbidity                                                | 13       |
| 777QR           | Turbidity                                                | 13       |
| 779             | pH                                                       | 26       |
| 779QR           | pH                                                       | 26       |
| 784             | Surfactants-MBAS                                         | 26       |
| 784QR           | Surfactants-MBAS                                         | 26       |
| 785             | Silica                                                   | 26       |
| 785QR<br>786AQR | Silica<br>Wastewater Coliform                            | 26<br>34 |
|                 | Microbe - 9221                                           |          |
| 786QR           | Wastewater Coliform Microbe<br>Enterococci               | 34       |
| 787QR<br>794    | Texas Low-Level Fuels (TPH) in Water                     | 34<br>49 |
| 794QR           | Texas Low-Level Fuels (TPH) in Water                     | 49       |
| 795             | Texas High-Level Fuels (TPH) in Water                    | 49       |
| 795QR           | Texas High-Level Fuels (TPH) in Water                    | 49       |
| 796             | Texas Low-Level Fuels (TPH) in Soil                      | 49       |
| 796QR           | Texas Low-Level Fuels (TPH) in Soil                      | 49       |
|                 | , , <del> </del>                                         |          |

| Catalog<br>Number | Product Description                       | Page |
|-------------------|-------------------------------------------|------|
| 797               | Texas High-Level Fuels<br>(TPH) in Soil   | 49   |
| 797QR             | Texas High-Level Fuels<br>(TPH) in Soil   | 49   |
| 798               | Arizona TPH in Soil                       | 49   |
| 798QR             | Arizona TPH in Soil                       | 49   |
| 800               | Air Filter Radionuclides                  | 62   |
| 801               | Air Filter Gross Alpha/Beta               | 62   |
| 802               | Soil Radionuclides                        | 62   |
| 803               | Vegetation Radionuclides                  | 62   |
| 804               | Water Radionuclides                       | 63   |
| 805               | Water Gross Alpha/Beta                    | 63   |
| 806               | Water Tritium                             | 63   |
| 807               | Strontium-89/91                           | 60   |
| 808               | Gamma Emitters                            | 60   |
| 809               | Gross Alpha/Beta                          | 60   |
| 810               | lodine-131                                | 60   |
| 811               | Naturals                                  | 60   |
| 812               | Tritium                                   | 60   |
| 817               | PCBs in Oil                               | 42   |
| 818               | 1 Liter Boston Round Oil & Grease         | 11   |
| 820               | PCBs in Oil - 1242 Low                    | 42   |
| 821               | PCBs in Oil - 1242 High                   | 42   |
| 822               | PCBs in Oil - 1254 Low                    | 42   |
| 823               | PCBs in Oil - 1254 High                   | 42   |
| 824               | PCBs in Oil - 1260 Low                    | 42   |
| 825               | PCBs in Oil - 1260 High                   | 42   |
| 826               | PCBs in Oil – 1248 Low                    | 42   |
| 827               | PCBs in Oil - 1248 High                   | 42   |
| 829               | Chlorinated Acid Herbicides               | 15   |
| 830               | Volatiles                                 | 14   |
| 831               | Organochlorine Pesticides                 | 17   |
| 832S              | PCBs in Water                             | 15   |
| 833               | Base/Neutrals                             | 16   |
| 834               | Acids                                     | 16   |
| 835S              | PCBs in Oil                               | 15   |
| 836               | Low-Level PAHs                            | 16   |
| 837               | Chlordane                                 | 17   |
| 838               | Toxaphene                                 | 17   |
| 839               | PCBs as Decachlorobiphenyl                | 30   |
| 840               | Regulated Volatiles                       | 27   |
| 841               | Unregulated Volatiles                     | 27   |
| 842               | Halomethanes (THMs)                       | 27   |
| 844               | Toxaphene                                 | 28   |
| 845               | Chlordane                                 | 28   |
| 846               | Carbamate/Carbamoxyloxime<br>Pesticides   | 28   |
| 847               | EDB/DBCP/TCP                              | 30   |
| 848               | Semivolatiles #1                          | 30   |
| 849               | Semivolatiles #2 Herbicides               | 30   |
| 850               | Pesticides                                | 28   |
| 851               | Chlorinated Acid Herbicides               | 30   |
| 852               | Haloacetic Acids (HAA)                    | 25   |
| 853               | Chloral Hydrate                           | 25   |
| 854               | Hexavalent Chromium                       | 24   |
| 856               | Vanadium                                  | 24   |
| 857               | Dioxin                                    | 30   |
| 858               | Uranium                                   | 24   |
| 859               | Color                                     | 26   |
| 860               | PCBs in Water Standards - Aroclor 1016    | 15   |
| 861               | PCBs in Water Standards<br>- Aroclor 1221 | 15   |

| Catalog<br>Number | Product Description                          | Page |
|-------------------|----------------------------------------------|------|
| 862               | PCBs in Water Standards<br>- Aroclor 1232    | 15   |
| 863               | PCBs in Water Standards<br>- Aroclor 1242    | 15   |
| 864               | PCBs in Water Standards<br>- Aroclor 1248    | 15   |
| 865               | PCBs in Water Standards<br>- Aroclor 1254    | 15   |
| 866               | PCBs in Water Standards<br>- Aroclor 1260    | 15   |
| 867               | Oil & Grease (O&G) in Soil                   | 39   |
| 869               | Nutrients in Soil                            | 39   |
| 870               | Ready-to-Use VOAs in Soil                    | 40   |
| 871               | Nitroaromatics & Nitramines in Soil          | 41   |
| 873               | Anions in Soil                               | 39   |
| 874               | Ignitability/Flash Point                     | 38   |
| 875               | Corrosivity/pH in Soil                       | 38   |
| 876               | Hexavalent Chromium in Soil                  | 38   |
| 878               | Organophosphorus Pesticides<br>(OPP) in Soil | 43   |
| 879               | Carbamate Pesticides in Soil                 | 43   |
| 880               | Enterococci                                  | 34   |
| 881               | Low-Level Total Residual<br>Chlorine (TRC)   | 14   |
| 882               | Color                                        | 13   |
| 883               | Settleable Solids                            | 10   |
| 884               | Volatile Solids                              | 10   |
| 885               | Acidity                                      | 13   |
| 886               | Boron                                        | 14   |
| 887               | Bromide                                      | 14   |
| 888<br>890        | Nitrite<br>Silica                            | 10   |
| 891               | Sulfide                                      | 13   |
| 892               | Surfactants-MBAS                             | 13   |
| 893               | Turbidity                                    | 13   |
| 895               | Total Organic Halides (TOX)                  | 13   |
| 896               | Low-Level Mercury                            | 12   |
| 898               | Hexavalent Chromium                          | 12   |
| 899               | Carbamate Pesticides                         | 17   |
| 900               | Corrosivity                                  | 26   |
| 901               | Surfactants-MBAS                             | 26   |
| 902               | Silica                                       | 26   |
| 903               | Perchlorate                                  | 26   |
| 904               | UV 254 Absorbance                            | 26   |
| 905               | Gasoline Additives                           | 27   |
| 908               | Carbamate Pesticides                         | 17   |
| 908QR             | Carbamate Pesticides Gasoline Additives      | 17   |
| 909<br>909OR      | Gasoline Additives Gasoline Additives        | 27   |
| 910               | Perchlorate                                  | 26   |
| 910QR             | Perchlorate                                  | 26   |
| 911               | Settleable Solids                            | 10   |
| 911QR             | Settleable Solids                            | 10   |
| 913               | Volatile Solids                              | 10   |
| 913QR             | Volatile Solids                              | 10   |
| 914               | Corrosivity/pH in Soil                       | 38   |
| 914QR             | Corrosivity/pH in Soil                       | 38   |
| 915               | Acidity                                      | 13   |
| 915QR             | Acidity                                      | 13   |
| 917               | Low-Level Total Residual<br>Chlorine (TRC)   | 14   |
| 917QR             | Low-Level Total Residual<br>Chlorine (TRC)   | 14   |
| 919               | Boron                                        | 14   |

| ì |                   |                                                               |          |
|---|-------------------|---------------------------------------------------------------|----------|
|   | Catalog<br>Number | Product Description                                           | Page     |
|   | 919QR             | Boron                                                         | 14       |
|   | 920               | Nitroaromatics & Nitramines in Soil                           | 41       |
|   | 920QR             | Nitroaromatics & Nitramines in Soil                           | 41       |
| l | 921               | Hexavalent Chromium in Soil                                   | 38       |
|   | 921QR             | Hexavalent Chromium in Soil                                   | 38       |
| l | 924               | Ready-to-Use VOAs in Soil                                     | 40       |
|   | 924QR             | Ready-to-Use VOAs in Soil                                     | 40       |
|   | 925               | Organophosphorus Pesticide<br>(OPP) in Soil                   | 43       |
|   | 925QR             | Organophosphorus Pesticide<br>(OPP) in Soil                   | 43       |
| l | 926               | Carbamate Pesticides in Soil                                  | 43       |
| ı | 926QR             | Carbamate Pesticides in Soil                                  | 43       |
| l | 928               | Glycols in Soil                                               | 41       |
| ı | 928QR             | Glycols in Soil PFAS Ground Water                             | 41       |
|   | 929               | & Surface Water                                               | 28       |
|   | 930               | Uranium                                                       | 24       |
| l | 930QR             | Uranium                                                       | 24       |
| ı | 931               | Low-Level Mercury                                             | 12       |
|   | 931QR<br>932      | Low-Level Mercury  Low-Level Nitroaromatics                   | 12<br>16 |
|   | 934               | & Nitramines Organophosphorus                                 | 17       |
|   | 934               | Pesticides (OPP) Heterotrophic Plate Count                    | 34       |
| l | 960               | PFAS Drinking Water                                           | 28       |
|   | 974               | Chemical Oxygen Demand                                        | 76       |
|   | 975               | (COD) - 1000 mg/L, 500 mL<br>MBAS/LAS Surfactants             | 76       |
|   | 976               | - 1000 mg/L<br>Total Organic Halides (TOX)                    | 76       |
|   |                   | – 1000 mg/L, 2 mL                                             |          |
| l | 977               | pH                                                            | 14       |
| ı | 977QR             | pH                                                            | 14       |
|   | 978               | Total Organic Carbon<br>(TOC) - 1000mg/L, 500 mL              | 76       |
|   | 979               | Ignitability/Flash Point                                      | 38       |
| l | 979QR             | Ignitability/Flash Point                                      | 38       |
| ı | 980               | Corrosivity                                                   | 26       |
| l | 980QR             | Corrosivity                                                   | 26       |
| ı | 981               | Ion Chromatography                                            | 77       |
| l | 982<br>983        | Phenol - 1000mg/L, 500 mL                                     | 76<br>25 |
| l | 983QR             | Cyanide<br>Cyanide                                            | 25       |
| l | 984               | Hexavalent Chromium                                           | 12       |
| ı | 984QR             | Hexavalent Chromium                                           | 12       |
|   | 985               | Ammonia as Nitrogen (N)<br>- 1000 mg/L, 500 mL                | 76       |
|   | 986               | Ammonia as Ammonia (NH <sub>3</sub> ) – 1000 mg/L, 500 mL     | 76       |
| ı | 987               | Bromide – 1000 mg/L, 500 mL                                   | 76       |
| ľ | 988               | Chloride – 1000 mg/L, 500 mL                                  | 76       |
| ı | 989               | Fluoride – 1000 mg/L, 500 mL                                  | 76       |
|   | 990               | Nitrite as Nitrogen (N) – 1000 mg/L, 500 mL                   | 76       |
|   | 991               | Nitrate as Nitrogen (N) – 1000 mg/L, 500 mL                   | 76       |
|   | 992               | Nitrate as Nitrate (NO <sub>3</sub> ) – 1000 mg/L, 500 mL     | 76       |
|   | 993               | Phosphate as Phosphorous (P) – 1000 mg/L, 500 mL              | 76       |
|   | 994               | Phosphate as Phosphate (PO <sub>4</sub> ) – 1000 mg/L, 500 mL | 76       |
|   | 005               | C. If-t- 1000 // 500 /                                        | 70       |

| Catalog<br>Number | Product Description                                  | Page     |
|-------------------|------------------------------------------------------|----------|
| 996               | Total Kjeldahl-Nitrogen (TKN)<br>- 1000 mg/L, 500 mL | 76       |
| 997               | Cyanide (free)<br>- 1000 mg/L, 500 mL                | 76       |
| 998               | Complex Cyanide<br>- 1000 mg/L, 500 mL               | 76       |
| 999               | Sulfide 1000 mg/L, 10 mL                             | 76       |
| 1000              | Volatiles in Gas Cylinder                            | 54       |
| 1001              | Volatiles on Sorbent                                 | 54       |
| 1010              | Semivolatiles on<br>Polyurethane Foam                | 55       |
| 1011              | Organochlorine Pesticides on Polyurethane Foam       | 55       |
| 1012              | PCBs on Polyurethane Foam                            | 55       |
| 1013              | PAHs on Polyurethane Foam                            | 55       |
| 1014              | Aldehydes & Ketones on Sorbent                       | 55       |
| 1025              | Metals on Filter Paper                               | 56       |
| 1026              | Metals in Impinger Solution                          | 56       |
| 1027              | Mercury on Filter Paper                              | 56       |
| 1028              | Mercury in Impinger Solution                         | 56       |
| 1029              | Lead on Filter Paper                                 | 56       |
| 1030              | Lead in Impinger Solution                            | 56       |
| 1031              | Chromium on Filter Paper Hexavalent Chromium in      | 56       |
| 1032              | Impinger Solution Hydrogen Halides & Halogens        | 56       |
| 1040              | in Impinger Solution                                 | 57       |
| 1041              | Fluoride in Impinger Solution  Nitrogen Oxide in     | 57       |
| 1042              | Impinger Solution Sulfur Dioxide in                  | 57       |
| 1043              | Impinger Solution                                    | 57       |
| 1044              | Sulfuric Acid & Sulfur Dioxide in Impinger Solution  | 57       |
| 1045              | Ammonia in Impinger Solution                         | 57       |
| 1050              | Particulate Matter on Filter Paper                   | 57       |
| 1051              | Particulate Matter in<br>Impinger Solution           | 57       |
| 1100              | Volatiles in Gas Cylinder                            | 54       |
| 1100QR            | Volatiles in Gas Cylinder                            | 54       |
| 1101              | Volatiles on Sorbent                                 | 54       |
| 1101QR            | Volatiles on Sorbent                                 | 54       |
| 1110              | Semivolatiles on<br>Polyurethane Foam                | 55       |
| 1110QR            | Semivolatiles on<br>Polyurethane Foam                | 55       |
| 1111              | Organochlorine Pesticides on Polyurethane Foam       | 55       |
| 1111QR            | Organochlorine Pesticides on Polyurethane Foam       | 55       |
| 1112              | PCBs on Polyurethane Foam                            | 55       |
| 1112QR            | PCBs on Polyurethane Foam                            | 55       |
| 1113              | PAHs on Polyurethane Foam                            | 55       |
| 1113QR            | PAHs on Polyurethane Foam                            | 55       |
| 1114              | Aldehydes & Ketones<br>on Sorbent                    | 55       |
| 1114QR            | Aldehydes & Ketones<br>on Sorbent                    | 55       |
| 1125              | Metals on Filter Paper                               | 56       |
| 1125QR            | Metals on Filter Paper                               | 56       |
| 1126              | Metals in Impinger Solution                          | 56       |
| 1126QR            | Metals in Impinger Solution                          | 56       |
| 1127<br>1127QR    | Mercury on Filter Paper Mercury on Filter Paper      | 56<br>56 |
| 1127QH            | Mercury in Impinger Solution                         | 56       |
| 1120              | wichout y in impinger solution                       | 50       |

Sulfate - 1000 mg/L, 500 mL

76

995

| Catalog           |                                                     |      |
|-------------------|-----------------------------------------------------|------|
| Catalog<br>Number | Product Description                                 | Page |
| 1128QR            | Mercury in Impinger Solution                        | 56   |
| 1129              | Lead on Filter Paper                                | 56   |
| 1129QR            | Lead on Filter Paper                                | 56   |
| 1130              | Lead in Impinger Solution                           | 56   |
| 1130QR            | Lead in Impinger Solution                           | 56   |
| 1131              | Chromium on Filter Paper                            | 56   |
| 1131QR            | Chromium on Filter Paper Hexavalent Chromium        | 56   |
| 1132              | in Impinger Solution                                | 56   |
| 1132QR            | Hexavalent Chromium in Impinger Solution            | 56   |
| 1140              | Hydrogen Halides & Halogens in Impinger Solution    | 57   |
| 1140QR            | Hydrogen Halides & Halogens in Impinger Solution    | 57   |
| 1141              | Fluoride in Impinger Solution                       | 57   |
| 1141QR            | Fluoride in Impinger Solution                       | 57   |
| 1142              | Nitrogen Oxide in<br>Impinger Solution              | 57   |
| 1142QR            | Nitrogen Oxide in<br>Impinger Solution              | 57   |
| 1143              | Sulfur Dioxide in<br>Impinger Solution              | 57   |
| 1143QR            | Sulfur Dioxide in<br>Impinger Solution              | 57   |
| 1144              | Sulfuric Acid & Sulfur Dioxide in Impinger Solution | 57   |
| 1144QR            | Sulfuric Acid & Sulfur Dioxide in Impinger Solution | 57   |
| 1145              | Ammonia in Impinger Solution                        | 57   |
| 1145QR            | Ammonia in Impinger Solution                        | 57   |
| 1150              | Particulate Matter on<br>Filter Paper               | 57   |
| 1150QR            | Particulate Matter on<br>Filter Paper               | 57   |
| 1151              | Particulate Matter in Impinger Solution             | 57   |
| 1151QR            | Particulate Matter in Impinger Solution             | 57   |
| 1240              | Simple Nutrients                                    | 68   |
| 1241              | Complex Nutrients in Hard Water                     | 68   |
| 1242              | Demand                                              | 66   |
| 1243              | Solids Concentrate                                  | 67   |
| 1244              | Metals                                              | 67   |
| 1248              | Hexavalent Chromium                                 | 67   |
| 1249              | Common Inorganics                                   | 66   |
| 1255              | PCB Congeners                                       | 69   |
| 1319              | Ammonia as N                                        | 25   |
| 1341              | Mercury                                             | 67   |
| 1345              | Cyanide                                             | 66   |
| 1346              | Common Inorganics in Hard Water                     | 66   |
| 1347              | Common Inorganics in Soft Water                     | 66   |
| 1348              | Simple Nutrients in Hard Water                      | 68   |
| 1349              | Simple Nutrients in Soft Water                      | 68   |
| 1353              | Color                                               | 66   |
| 1354              | Demand                                              | 66   |
| 1355              | High Solids                                         | 67   |
| 1358              | Chlorine                                            | 66   |
| 1359              | Ammonia as N                                        | 25   |
| 1359QR            | Ammonia as N                                        | 25   |
| 1370              | Volatiles                                           | 68   |

| Catalog<br>Number | Product Description                                           | Page     |
|-------------------|---------------------------------------------------------------|----------|
| 1500              | Perchlorate                                                   | 13       |
| 1501              | Perchlorate                                                   | 13       |
| 1501QR            | Perchlorate                                                   | 13       |
| 4013              | QC Plus - Demand                                              | 19       |
| 4023              | QC Plus - Nutrients                                           | 19       |
| 4030              | Solids Concentrate                                            | 10       |
| 4032              | Solids Concentrate                                            | 10       |
| 4032QR            | Solids Concentrate                                            | 10       |
| 4033              | QC Plus - Solids                                              | 20       |
| 4053<br>4063      | QC Plus - Minerals<br>QC Plus - pH                            | 19<br>19 |
| 4083              | QC Plus - Total Phenolics                                     | 20       |
| 4093              | QC Plus - Total Cyanide                                       | 20       |
| 4103              | QC Plus - Total Residual Chlorine                             | 20       |
| 4120              | Oil & Grease Concentrate                                      | 11       |
| 4122              | Oil & Grease Concentrate                                      | 11       |
| 4122QR            | Oil & Grease Concentrate                                      | 11       |
| 4123              | QC Plus - Oil & Grease                                        | 19       |
| 4183              | QC Plus - Hexavalent Chromium                                 | 19       |
| 4400              | Uranium                                                       | 12       |
| 4402              | Uranium                                                       | 12       |
| 4402QR            | Uranium                                                       | 12       |
| 4423              | QC Plus - Fluoride                                            | 19       |
| 4450              | Volatile Aromatics                                            | 14       |
| 4452              | Volatile Aromatics                                            | 14       |
| 4452QR            | Volatile Aromatics                                            | 14       |
| 4880              | PAH-GC & GCMS                                                 | 16       |
| 4882              | PAH-GC & GCMS                                                 | 16       |
| 4882QR            | PAH-GC & GCMS                                                 | 16       |
| 4990<br>4992      | Lithium<br>Lithium                                            | 12<br>12 |
| 4992QR            | Lithium                                                       | 12       |
| 5150              | Solids Concentrate                                            | 24       |
| 5152              | Solids Concentrate                                            | 24       |
| 5152QR            | Solids Concentrate                                            | 24       |
| 5260              | Inorganic Disinfection #2                                     | 25       |
| 5262              | Inorganic Disinfection #2                                     | 25       |
| 5262QR            | Inorganic Disinfection #2                                     | 25       |
| 5270              | Inorganic Disinfection #1                                     | 25       |
| 5272              | Inorganic Disinfection #1                                     | 25       |
| 5272QR            | Inorganic Disinfection #1                                     | 25       |
| 20080             | Replacement Lamp                                              | 101      |
| 78102             | Ammonium as NH <sub>4</sub><br>- 100 mg/L, 125 mL             | 76       |
| 78104             | Ammonium as N<br>- 100 mg/L, 125 mL                           | 76       |
| 78202             | Acetate - 1000 mg/L, 125 mL                                   | 76       |
| 78212             | Iodide - 1000 mg/L, 125 mL<br>Sodium Thiosulfate 0.0394 N.    | 76       |
| 182002            | 1 gallon                                                      | 83       |
| 182003            | Sodium Thiosulfate 0.0394 N,<br>5 gallons                     | 83       |
| 183001            | Potassium Permananate 0.1 N,<br>2.5 Liter                     | 83       |
| 183002            | Sodium Carbonate 25 g/L,<br>10 Liter                          | 83       |
| 183003            | Sulfuric Acid 0.05 N, 1L                                      | 83       |
| 183004            | pH 2 Buffer, No Color, 1 Pint                                 | 82       |
| 183005            | pH 4 Buffer, No Color, 1 Pint                                 | 82       |
| 183006            | pH 7 Buffer, No Color, 1 Pint                                 | 82       |
| 183007            | pH 10 Buffer, No Color, 1 Pint  Mangapage Std. 40 g/L 1 liter | 82       |
| 183008            | Manganese Std. 40 g/L, 1 liter                                | 83       |

| Catalog<br>Number | Product Description                                  | Page |
|-------------------|------------------------------------------------------|------|
| 183009            | Manganese Std. 55 g/L,1 liter                        | 83   |
| 183010            | Hydrochloric Acid 0.1 N, 2.5 L                       | 82   |
| 183011            | Ferrous Ammonium Sulfate 0.25N,<br>1 Gallon          | 83   |
| 183012            | pH 6 Buffer, Concentrated Buffer,<br>No Color, 2.5 L | 82   |
| 183013            | pH 7 Buffer, Concentrated Buffer,<br>No Color, 2.5 L | 82   |
| 183016            | Hydrochloric Acid 0.645 N,<br>5 gallon               | 82   |
| 183017            | Barium Perchlorate 0.1 N,<br>1 liter                 | 83   |
| 183026            | Hydrochloric Acid 0.01 N,<br>1 liter                 | 82   |
| 183028            | Hydrochloric Acid 0.01 N,<br>1 gallon                | 82   |
| 183030            | Hydrochloric Acid 0.1 N,<br>1 liter                  | 82   |
| 183032            | Hydrochloric Acid 0.1 N,<br>1 gallon                 | 82   |
| 183034            | Hydrochloric Acid 0.25 N,<br>1 liter                 | 82   |
| 183036            | Hydrochloric Acid 0.25 N,<br>1 gallon                | 82   |
| 183038            | Hydrochloric Acid 0.5 N,<br>1 liter                  | 82   |
| 183040            | Hydrochloric Acid 0.5 N,<br>1 gallon                 | 82   |
| 183042            | Hydrochloric Acid 1.0 N,<br>1 liter                  | 82   |
| 183044            | Hydrochloric Acid 1.0 N,<br>1 gallon                 | 82   |
| 183048            | Sulfuric Acid 0.01 N,<br>1 liter                     | 83   |
| 183049            | Sulfuric Acid 0.01 N,<br>1 gallon                    | 83   |
| 183050            | Sulfuric Acid 0.02 N,<br>1 liter                     | 83   |
| 183052            | Sulfuric Acid 0.02 N,<br>1 gallon                    | 83   |
| 183054            | Sulfuric Acid 0.1 N,<br>1 liter                      | 83   |
| 183056            | Sulfuric Acid 0.1 N,<br>1 gallon                     | 83   |
| 183058            | Sulfuric Acid 0.2 N,<br>1 liter                      | 83   |
| 183060            | Sulfuric Acid 0.2 N,<br>1 gallon                     | 83   |
| 183062            | Sulfuric Acid 0.5 N,<br>1 liter                      | 83   |
| 183064            | Sulfuric Acid 0.5 N,<br>1 gallon                     | 83   |
| 183066            | Sulfuric Acid 1 N,<br>1 liter                        | 83   |
| 183068            | Sulfuric Acid 1 N,<br>1 gallon                       | 83   |
| 183070            | Sodium Hydroxide 0.01 N,<br>1 liter                  | 83   |
| 183072            | Sodium Hydroxide 0.01 N,<br>1 gallon                 | 83   |
| 183074            | Sodium Hydroxide 0.1 N,<br>1 liter                   | 83   |
| 183076            | Sodium Hydroxide 0.1 N,<br>1 gallon                  | 83   |
| 183078            | Sodium Hydroxide 0.25 N,<br>1 liter                  | 83   |
| 183080            | Sodium Hydroxide 0.25 N,<br>1 gallon                 | 83   |
| 183082            | Sodium Hydroxide 0.50 N,<br>1 gallon                 | 83   |

| Catalog<br>Number | Product Description                     | Page |
|-------------------|-----------------------------------------|------|
| 183086            | Sodium Hydroxide 1.0 N,<br>1 liter      | 83   |
| 183088            | Sodium Hydroxide 1.0 N,<br>1 gallon     | 83   |
| 183090            | Potassium Hydroxide 0.01 N,<br>1 liter  | 82   |
| 183092            | Potassium Hydroxide 0.01 N,<br>1 gallon | 82   |
| 183094            | Potassium Hydroxide 0.1 N,<br>1 liter   | 82   |
| 183096            | Potassium Hydroxide 0.1 N,<br>1 gallon  | 82   |
| 183098            | Potassium Hydroxide 0.25 N,<br>1 liter  | 82   |
| 183100            | Potassium Hydroxide 0.25 N,<br>1 gallon | 82   |
| 183102            | Potassium Hydroxide 0.50 N,<br>1 liter  | 82   |
| 183104            | Potassium Hydroxide 0.50 N,<br>1 gallon | 82   |
| 183110            | Silver Nitrate 0.1 N, 1 liter           | 83   |
| 183112            | Silver Nitrate 0.1 N, 1 gallon          | 83   |
| 183114            | Silver Nitrate 0.25 N, 1 liter          | 83   |
| 183116            | Silver Nitrate 0.25 N, 1 gallon         | 83   |
| 183118            | EDTA 0.1 M, 1 L                         | 82   |
| 183120            | EDTA 0.1 M, 1 gallon                    | 82   |
| 183126            | Sodium Thiosulfate 0.1 N,<br>1 liter    | 83   |
| 183128            | Sodium Thiosulfate 0.1 N,<br>1 gallon   | 83   |
| 183130            | Sodium Thiosulfate 0.25 N,<br>1 Liter   | 83   |
| 183132            | Sodium Thiosulfate 0.25 N,<br>1 gallon  | 83   |
| 183156            | Sodium Hydroxide 1.0 N,<br>5 gallon     | 83   |

| Catalog<br>Number | Product Description                               | Page |
|-------------------|---------------------------------------------------|------|
| 183160            | EDTA 0.01 M, 1 gallon                             | 82   |
| 183162            | TISAB (Fluoride Buffer, 1 Gallon)                 | 83   |
| 183168            | Phenolpthalein 0.5%, 1 pint                       | 83   |
| 183172            | Sodium Carbonate 1.0 N, 1 Liter                   | 83   |
| 183180            | pH 4 Buffer, No Color, 1 Liter                    | 82   |
| 183181            | pH 4 Buffer, No Color, 1 gallon                   | 82   |
| 183182            | pH 4 Buffer, No Color, 5 gallon                   | 82   |
| 183184            | pH 2 Buffer, No Color, 1 Liter                    | 82   |
| 183186            | pH 2 Buffer, No Color, 5 gallon                   | 82   |
| 183187            | pH 7 Buffer, No Color, 1 Liter                    | 82   |
| 183188            | pH 7 Buffer, No Color, 1 gallon                   | 82   |
| 183189            | pH 7 Buffer, No Color, 5 gallon                   | 82   |
| 183190            | pH 10 Buffer, No Color, 1 Liter                   | 82   |
| 183191            | pH 10 Buffer, No Color, 1 gallon                  | 82   |
| 183192            | pH 10 Buffer, No Color, 5 gallon                  | 82   |
| 183211            | Potassium Hydroxide 0.1 N<br>in IPA, 1 gallon     | 82   |
| 183212            | EDTA 0.02 M, 1 gallon                             | 82   |
| 83213             | Potassium Hydroxide (KOH)<br>5M/KCN 1 M, 5 gallon | 83   |
| 83217             | pH 4 Buffer, Red, 5 Gallon                        | 82   |
| 183218            | pH 7 Buffer, Yellow, 5 Gallon                     | 82   |
| 183219            | pH 10 Buffer, Blue, 5 Gallon                      | 82   |
| 183221            | Potassium Dichromate 0.1 N,<br>1 Liter            | 83   |
| 184001            | Hydrochloric Acid 0.1 N in IPA,<br>1 liter        | 82   |
| 187026            | pH 4 Buffer, Red, 1 Gallon                        | 82   |
| 187027            | pH 2 Buffer, No Color, 1 gallon                   | 82   |
| 187028            | pH 7 Buffer, Yellow, 1 Gallon                     | 82   |
| 187029            | pH 10 Buffer, Blue, 1 Gallon                      | 82   |
| 187503            | Hydrochloric Acid 0.01 N,<br>5 gallon             | 82   |

| Catalog<br>Number | Product Description                         | Page |
|-------------------|---------------------------------------------|------|
| 187506            | Hydrochloric Acid 0.1 N,<br>5 gallon        | 82   |
| 187507            | Hydrochloric Acid 0.25 N,<br>5 gallon       | 82   |
| 187508            | Hydrochloric Acid 0.5 N, 5 gallon           | 82   |
| 187510            | Hydrochloric Acid 1.0 N, 5 gallon           | 82   |
| 187511            | Sulfuric Acid 0.02 N, 5 gallon              | 83   |
| 187512            | Sulfuric Acid 0.1 N, 5 gallon               | 83   |
| 187514            | Sulfuric Acid 0.2 N, 5 gallon               | 83   |
| 187515            | Sulfuric Acid 1 N, 5 gallon                 | 83   |
| 187516            | Sodium Hydroxide 0.01 N,<br>5 gallon        | 83   |
| 187517            | Sodium Hydroxide 0.1 N,<br>5 gallon         | 83   |
| 187518            | Sodium Hydroxide 0.25 N,<br>5 gallon        | 83   |
| 187519            | Sodium Hydroxide 0.50 N,<br>5 gallon        | 83   |
| 187521            | Potassium Hydroxide 0.01 N,<br>5 gallon     | 82   |
| 187522            | Potassium Hydroxide 0.1 N,<br>5 gallon      | 82   |
| 187523            | Potassium Hydroxide 0.25 N,<br>5 gallon     | 82   |
| 187524            | Potassium Hydroxide 0.50 N,<br>5 gallon     | 82   |
| 187525            | EDTA 0.1 M, 5 gallon                        | 82   |
| K01               | Bismuth                                     | 77   |
| K08               | Yttrium                                     | 77   |
| K10               | Cations by Ion Chromatography<br>- 100 mg/L | 76   |
| K11               | Cations by Ion Chromatography<br>- 100 mg/L | 76   |

| A                   |    | Cal | LLCRM | MB | RChem | RGT | Soil | UST | WP | WS |
|---------------------|----|-----|-------|----|-------|-----|------|-----|----|----|
| Acetate             |    | 76  |       |    |       |     |      |     |    |    |
| Acidity             |    |     |       |    |       |     |      |     | 13 |    |
| Acids               |    |     |       |    |       |     | 41   |     | 16 |    |
| Air Filter          |    |     |       |    | 62    |     |      |     |    |    |
| Aldehydes & Ketones | 55 |     |       |    |       |     |      |     |    |    |
| Aluminum            |    | 77  |       |    |       |     |      |     |    |    |
| Americium-241       |    |     |       |    | 61    |     |      |     |    |    |
| Ammonia             | 57 | 76  |       |    |       |     |      |     |    |    |
| Ammonia as N        |    |     |       |    |       |     |      |     |    | 25 |
| Ammonium            |    | 76  |       |    |       |     |      |     |    |    |
| Anions              |    | 77  |       |    |       |     | 39   |     |    |    |
| Aromatics           |    |     |       |    |       |     |      |     | 16 |    |
| Arsenic             |    | 77  |       |    |       |     |      |     |    |    |

| В                               | AE         | Cal | LLCRM | MB | RChem | RGT | Soil | UST    | WP | WS |
|---------------------------------|------------|-----|-------|----|-------|-----|------|--------|----|----|
| Barium                          |            |     |       |    | 61    |     |      |        |    |    |
| Base/Neutrals                   |            |     |       |    |       |     | 41   |        | 16 |    |
| Beryllium                       |            | 77  |       |    |       |     |      |        |    |    |
| Biochemical Oxygen Demand (BOD) | See Demand |     |       |    |       |     |      |        |    |    |
| Bismuth                         |            | 77  |       |    |       |     |      |        |    |    |
| Boron                           |            |     |       |    |       |     |      |        | 14 |    |
| Boston Round Oil & Grease       |            |     |       |    |       |     |      |        | 11 |    |
| Bromate                         |            | 76  |       |    |       |     |      |        |    |    |
| Bromide                         |            | 76  |       |    |       |     |      |        | 14 |    |
| BTEX & MTBE                     |            |     |       |    |       |     | 40   | 48, 49 | 14 |    |

| С                             | AE | Cal          | LLCRM | MB | RChem | RGT | Soil   | UST | WP     | WS |
|-------------------------------|----|--------------|-------|----|-------|-----|--------|-----|--------|----|
| Calcium                       |    | 76,77        |       |    |       |     |        |     |        |    |
| Carbamate                     |    |              |       |    |       |     | 43     |     | 17     | 28 |
| Cations                       |    | 76,77,<br>78 |       |    |       |     |        |     |        |    |
| Cesium                        |    |              |       |    | 61    |     |        |     |        |    |
| Chemical Oxygen Demand (COD)* |    | 76           |       |    |       |     |        |     |        |    |
| Chloral Hydrate               |    |              |       |    |       |     |        |     |        | 25 |
| Chlorate                      |    | 76           |       |    |       |     |        |     |        |    |
| Chlordane                     |    |              |       |    |       |     | 43     |     | 17     | 28 |
| Chloride                      |    | 76           |       |    |       |     |        |     |        |    |
| Chlorinated Acid              |    |              |       |    |       |     | 42     |     | 15     | 30 |
| Chlorine                      |    |              | 66    |    |       |     |        |     | 14     | 25 |
| Chlorite                      |    | 76           |       |    |       |     |        |     |        |    |
| Chromium                      | 56 | 77           |       |    |       |     |        |     |        |    |
| Cobalt                        |    | 77           |       |    |       |     |        |     |        |    |
| Cobalt-60                     |    |              |       |    | 61    |     |        |     |        |    |
| Color                         |    |              | 66    |    |       |     |        |     | 13     | 26 |
| Complex Cyanide               |    | 76           |       |    |       |     |        |     |        |    |
| Complex Nutrients             |    |              | 68    |    |       |     |        |     | 10, 18 |    |
| Copper                        |    | 77           |       |    |       |     |        |     |        |    |
| Corrosivity                   |    |              |       |    |       |     | 38     |     |        | 26 |
| Cyanide                       |    | 76           | 66    |    |       |     | 39, 43 |     | 13, 20 | 26 |

\*See Demand

| D                           | AE | Cal | LLCRM | MB | RChem | RGT | Soil | UST    | WP            | WS |
|-----------------------------|----|-----|-------|----|-------|-----|------|--------|---------------|----|
| Demand                      |    |     | 66    |    |       |     |      |        | 12, 18,<br>19 |    |
| Diesel Range Organics (DRO) |    |     |       |    |       |     | 41   | 48, 49 | 16            |    |
| 1,4-Dioxane                 |    |     |       |    |       |     |      |        |               | 27 |
| Dioxin                      |    |     |       |    |       |     |      |        |               | 30 |
| Dissolved Oxygen            |    |     |       |    |       |     |      |        | 13            |    |

| Е                 | AE | Cal | LLCRM | MB | RChem | RGT | Soil | UST | WP | WS |
|-------------------|----|-----|-------|----|-------|-----|------|-----|----|----|
| EDB/DBCP/TCP      |    |     |       |    |       |     |      |     | 16 | 30 |
| EDTA              |    |     |       |    |       | 82  |      |     |    |    |
| Massachusetts EPH |    |     |       |    |       |     |      | 50  |    |    |
| New Jersey EPH    |    |     |       |    |       |     |      | 50  |    |    |
| Enterococci       |    |     |       | 34 |       |     |      |     |    |    |

| F        | AE | Cal | LLCRM | MB | RChem | RGT | Soil | UST | WP | WS |
|----------|----|-----|-------|----|-------|-----|------|-----|----|----|
| Fluoride | 57 | 76  |       |    |       |     |      |     | 19 |    |

| G                                | AE | Cal | LLCRM | MB | RChem             | RGT | Soil | UST           | WP | WS |
|----------------------------------|----|-----|-------|----|-------------------|-----|------|---------------|----|----|
| Gamma Emitters                   |    |     |       |    | 60                |     |      |               |    |    |
| Gasoline Additives               |    |     |       |    |                   |     |      |               |    | 27 |
| Gasoline Range<br>Organics (GRO) |    |     |       |    |                   |     | 39   | 48, 49,<br>50 | 15 |    |
| Glycols                          |    |     |       |    |                   |     | 41   |               | 16 |    |
| Gross Alpha/Beta                 |    |     |       |    | 60, 61,<br>62, 63 |     |      |               |    |    |

| Н                           | AE | Cal | LLCRM | MB | RChem | RGT | Soil | UST | WP     | WS |
|-----------------------------|----|-----|-------|----|-------|-----|------|-----|--------|----|
| Haloacetic Acids (HAA)      |    |     |       |    |       |     |      |     |        | 25 |
| Halomethanes (THMs)         |    |     |       |    |       |     |      |     |        | 27 |
| Hardness                    |    |     |       |    |       |     |      |     | 10, 18 | 24 |
| HCI                         |    |     |       |    |       | 82  |      |     |        |    |
| HEM/SGT-HEM                 |    |     |       |    |       |     |      |     | 11     |    |
| Herbicides                  |    |     |       |    |       |     | 41   |     | 15     | 30 |
| Heterotrophic Plate Count   |    |     |       | 34 |       |     |      |     |        |    |
| Hexavalent Chromium         | 56 |     | 67    |    |       |     | 38   |     | 12, 19 | 24 |
| Hydrogen Halides & Halogens | 57 |     |       |    |       |     |      |     |        |    |

| 1                                     | AE | Cal   | LLCRM  | MB | RChem | RGT | Soil | UST | WP | WS |
|---------------------------------------|----|-------|--------|----|-------|-----|------|-----|----|----|
| ICP-MS Trace Metals/<br>Major Cations |    | 77    |        |    |       |     |      |     |    |    |
| Ignitability/Flash Point              |    |       |        |    |       |     | 38   |     |    |    |
| Inorganic Disinfection                |    |       |        |    |       |     |      |     |    | 25 |
| Inorganics                            | 57 | 76    | 66, 67 |    |       |     | 39   |     |    | 24 |
| lodide                                |    | 76    |        |    |       |     |      |     |    |    |
| lodine-131                            |    |       |        |    | 60    |     |      |     |    |    |
| Ion Chromatography                    |    | 76,77 |        |    |       |     |      |     |    |    |
| Iron                                  |    | 77    |        |    |       |     |      |     |    |    |

| 1                                          | AF | 0.1 | LLCRM   | МО | RChem | RGT | Soil | UST | WD | 1110 |
|--------------------------------------------|----|-----|---------|----|-------|-----|------|-----|----|------|
| <u> </u>                                   | AE | Cal | LLCKIVI | MB | Runem | Hul | 2011 | 051 | WP | WS   |
| Lead                                       | 56 | 77  |         |    |       |     |      |     |    |      |
| Lithium                                    |    | 77  |         |    |       |     |      |     | 12 |      |
| Low-Level 1,2,3-TCP                        |    |     |         |    |       |     |      |     |    | 30   |
| Low-Level Mercury                          |    |     |         |    |       |     |      |     | 12 |      |
| Low-Level Nitroaromatics<br>& Nitramines   |    |     |         |    |       |     |      |     | 16 |      |
| Low-Level PAHs                             |    |     |         |    |       |     | 41   |     | 16 |      |
| Low-Level Total Residual<br>Chlorine (TRC) |    |     |         |    |       |     |      |     | 14 |      |

| М                                         |    | Cal   | LLCRM | MB | RChem | RGT | Soil   | WP    | WS |
|-------------------------------------------|----|-------|-------|----|-------|-----|--------|-------|----|
| Magnesium                                 |    | 76,77 |       |    |       |     |        |       |    |
| Manganese                                 |    | 77    |       |    |       | 83  |        |       |    |
| Massachusetts Ground<br>Water Enterococci |    |       |       | 34 |       |     |        |       |    |
| Mercury                                   | 56 | 77    | 67    |    |       |     |        | 12    | 24 |
| Metals                                    | 56 | 77,78 | 67    |    |       |     | 38, 43 |       | 24 |
| Minerals                                  |    |       |       |    |       |     |        | 12,18 | 24 |
| Molybdenum                                |    | 77    |       |    |       |     |        |       |    |

| N                           | AE | Cal | LLCRM | MB | RChem | RGT | Soil | UST | WP            | WS |
|-----------------------------|----|-----|-------|----|-------|-----|------|-----|---------------|----|
| Naturals                    |    |     |       |    | 60    |     |      |     |               |    |
| Nickel                      |    | 77  |       |    |       |     |      |     |               |    |
| Nitrate                     |    | 76  |       |    |       |     |      |     |               |    |
| Nitrite                     |    | 76  |       |    |       |     |      |     | 10            | 25 |
| Nitroaromatics & Nitramines |    |     |       |    |       |     | 41   |     | 16            |    |
| Nitrogen Oxide              | 57 |     |       |    |       |     |      |     |               |    |
| Nitrogen Pesticides         |    |     |       |    |       |     |      |     | 17            |    |
| Nutrients                   |    |     | 68    |    |       |     | 39   |     | 10, 18,<br>19 | 25 |

| 0                                    |    | Cal | LLCRM | МВ | RChem | RGT | Soil   | WP            | ws |
|--------------------------------------|----|-----|-------|----|-------|-----|--------|---------------|----|
| Oil & Grease                         |    |     |       |    |       |     | 39     | 11, 18,<br>19 |    |
| Oil & Grease Concentrate             |    |     |       |    |       |     |        | 11            |    |
| o-Phosphate Nutrients                |    |     |       |    |       |     |        |               | 25 |
| Organic Carbon                       |    |     |       |    |       |     |        |               | 26 |
| Organochlorine Pesticides            | 55 |     |       |    |       |     | 41, 43 | 17            |    |
| Organophosphorus<br>Pesticides (OPP) |    |     |       |    |       |     | 43     | 17            |    |

| P                              | AE | Cal | LLCRM | MB | RChem | RGT   | Soil   | WP            | WS     |
|--------------------------------|----|-----|-------|----|-------|-------|--------|---------------|--------|
| PAHs                           | 55 |     |       |    |       |       | 41     | 16            |        |
| Particulate Matter             | 57 |     |       |    |       |       |        |               |        |
| PCBs                           | 55 |     |       |    |       |       | 42     | 15            | 30     |
| Perchlorate                    |    | 76  |       |    |       | 83    |        | 13            | 26, 30 |
| Pesticides                     | 55 |     |       |    |       |       | 41, 43 | 17            | 28     |
| PFAS                           |    |     |       |    |       |       | 41     | 15            | 28     |
| рН                             |    | 78  |       |    |       | 82    | 38     | 14, 18,<br>19 | 26     |
| Phenol                         |    | 76  |       |    |       |       |        | 13, 20        |        |
| Phosphate                      |    | 76  |       |    |       |       |        |               |        |
| Phosphorus                     |    | 77  |       |    |       |       |        |               |        |
| Plutonium                      |    |     |       |    | 61    |       |        |               |        |
| Potable Water Coliform Microbe |    |     |       | 34 |       |       |        |               |        |
| Potoccium                      |    | 77  |       |    |       | 82 83 |        |               |        |

| Q       | Cal | LLCRM | МВ | RChem | RGT | Soil | WP     | WS |
|---------|-----|-------|----|-------|-----|------|--------|----|
| QC-Plus |     |       |    |       |     |      | 19, 20 |    |

| Cal | LLCRM  | МВ           | RChem           | RGT | Soil |             | WP           | WS          |
|-----|--------|--------------|-----------------|-----|------|-------------|--------------|-------------|
|     |        |              | 61              |     |      |             |              |             |
|     |        |              | 62, 63          |     |      |             |              |             |
|     |        |              |                 |     | 40   |             |              |             |
|     |        |              |                 |     |      |             |              | 27          |
|     |        |              |                 |     |      |             | 14, 20       | 25          |
|     |        |              |                 |     |      | 49          |              |             |
| AE  | AE Cal | AE Cal LLCRM | AE Cal LLCRM MB | 61  | 61   | 61<br>62,63 | 61 62, 63 40 | 61 62,63 40 |

| S                         | AE | Cal | LLCRM | MB | RChem  | RGT | Soil | WP            | WS |
|---------------------------|----|-----|-------|----|--------|-----|------|---------------|----|
| Selenium                  |    | 77  |       |    |        |     |      |               |    |
| Semivolatiles             | 55 |     |       |    |        |     | 40   | 16            | 30 |
| Settleable Solids         |    |     |       |    |        |     |      | 10            |    |
| Silica                    |    | 77  |       |    |        |     |      | 13            | 26 |
| Silicon                   |    | 77  |       |    |        |     |      |               |    |
| Silver                    |    | 77  |       |    |        |     |      |               |    |
| Silver Nitrate            |    |     |       |    |        | 83  |      |               |    |
| Simple Nutrients          |    |     | 68    |    |        |     |      | 10, 18,<br>19 |    |
| Sodium                    |    | 77  |       |    |        | 83  |      |               |    |
| Sodium Hydroxide          |    |     |       |    |        | 83  |      |               |    |
| Sodium Thiosulfate        |    |     |       |    |        | 83  |      |               |    |
| Solids/Solids Concentrate |    |     | 67    |    |        |     |      | 10, 18,<br>20 | 24 |
| Source Water Microbe      |    |     |       | 34 |        |     |      |               |    |
| Strontium                 |    | 77  |       |    | 60, 61 |     |      |               |    |
| Sulfate                   |    | 76  |       |    |        |     |      |               |    |
| Sulfide                   |    | 76  |       |    |        |     |      | 13            |    |
| Sulfite                   |    |     |       |    |        |     |      | 13            |    |
| Sulfur Dioxide            | 57 |     |       |    |        |     |      |               |    |
| Sulfuric Acid             | 57 |     |       |    |        | 83  |      |               |    |
| Surfactants-MBAS          |    | 76  |       |    |        |     |      | 13            | 26 |

| T                                     | AE | Cal   | LLCRM | MB | RChem         | RGT | Soil | UST    | WP     | WS |
|---------------------------------------|----|-------|-------|----|---------------|-----|------|--------|--------|----|
| TCLP                                  |    |       |       |    |               |     | 40   |        |        |    |
| Thallium                              |    | 77    |       |    |               |     |      |        |        |    |
| Tin                                   |    | 77    |       |    |               |     |      |        |        |    |
| Tin & Titanium                        |    |       |       |    |               |     |      |        | 12     |    |
| Titanium                              |    | 77    |       |    |               |     |      |        | 12     |    |
| Total Cyanide                         |    |       |       |    |               |     |      |        | 20     |    |
| Total Kjeldahl Nitrogen (TKN)         |    | 76    |       |    |               |     |      |        |        |    |
| Total Organic Carbon (TOC)            |    | 76*   |       |    |               |     |      |        |        |    |
| Total Organic Halides (TOX)           |    | 76    |       |    |               |     |      |        | 13     |    |
| Total Petroleum<br>Hydrocarbons (TPH) |    |       |       |    |               |     | 40   | 48, 49 | 11     |    |
| Total Phenolics                       |    |       | 67    |    |               |     |      |        | 13, 20 |    |
| Total Residual Chlorine               |    |       |       |    |               |     |      |        | 14, 20 |    |
| Toxaphene                             |    |       |       |    |               |     | 43   |        | 17     | 28 |
| Trace Metals                          |    | 77,78 |       |    |               |     |      |        | 12, 18 | 24 |
| Tritium                               |    |       |       |    | 60, 61,<br>63 |     |      |        |        |    |
| Turbidity                             |    |       |       |    |               |     |      |        | 13     | 26 |

| U                     | AE | Cal | LLCRM | MB | RChem | RGT | Soil | UST | WP | WS |
|-----------------------|----|-----|-------|----|-------|-----|------|-----|----|----|
| Unregulated Volatiles |    |     |       |    |       |     |      |     |    | 27 |
| Uranium               |    |     |       |    | 61    |     |      |     | 12 | 24 |
| UV 248 Absorbance     |    |     |       |    |       |     |      |     |    | 26 |

| V                  | AE | Cal | LLCRM | MB | RChem | RGT | Soil   | UST | WP | WS |
|--------------------|----|-----|-------|----|-------|-----|--------|-----|----|----|
| Vanadium           |    | 77  |       |    |       |     |        |     |    | 24 |
| Volatiles          | 54 |     | 68    |    |       |     | 39, 40 |     | 14 | 27 |
| Volatile Aromatics |    |     |       |    |       |     |        |     | 14 |    |
| Volatile Solids    |    |     |       |    |       |     |        |     | 10 |    |
| VPH                |    |     |       |    |       |     |        | 50  |    |    |

| W                      | AE | Cal | LLCRM | MB | RChem | RGT | Soil | UST | WP | WS |
|------------------------|----|-----|-------|----|-------|-----|------|-----|----|----|
| Washington HEM/SGT-HEM |    |     |       |    |       |     |      | 50  |    |    |

| Υ       | AE | Cal | LLCRM | MB | RChem | RGT | Soil | UST | WP | WS |
|---------|----|-----|-------|----|-------|-----|------|-----|----|----|
| Yttrium |    | 77  |       |    |       |     |      |     |    |    |

| Z    | AE | Cal | LLCRM | МВ | RChem | RGT | Soil | UST | WP | WS |
|------|----|-----|-------|----|-------|-----|------|-----|----|----|
| Zinc |    | 77  |       |    | 61    |     |      |     |    |    |

AE Air & Emissions Calibration

RChem Radiochemistry Reagents

Water Pollution WS Water Supply

LLCRM Low-Level CRMs Microbiology

Soil Soil UST Underground Storage Tank

| Α                                        | AE    | Cal   | LLCRM | MB | RChem | RGT | Soil  | UST | WP         | WS |
|------------------------------------------|-------|-------|-------|----|-------|-----|-------|-----|------------|----|
| Acenaphthene                             | 55    |       |       |    |       |     | 41    |     | 16         | 30 |
| Acenaphthylene                           | 55    |       |       |    |       |     | 41    |     | 16         | 30 |
| Acetaldehyde                             | 55    |       |       |    |       |     |       |     |            |    |
| Acetate                                  |       | 76    |       |    |       |     |       |     |            |    |
| Acetone                                  | 54-55 |       |       |    |       |     | 39-40 |     | 14         |    |
| Acetonitrile                             | 54    |       |       |    |       |     | 39-40 |     | 14         |    |
| Acetophenone                             |       |       |       |    |       |     | 41    |     | 16         |    |
| Acidity as CaCO <sub>3</sub>             |       |       |       |    |       |     |       |     | 13         |    |
| Acifluorfen                              |       |       |       |    |       |     | 42    |     | 15         | 30 |
| Acrolein                                 | 54    |       |       |    |       |     | 39-40 |     | 14         |    |
| Acrylonitrile                            | 54    |       |       |    |       |     |       |     | 14         |    |
| Actinium                                 |       |       |       |    | 62    |     |       |     |            |    |
| Alachlor                                 |       |       |       |    |       |     |       |     | 17         | 28 |
| Aldicarb                                 |       |       |       |    |       |     | 43    |     | 17         | 28 |
| Aldicarb sulfone                         |       |       |       |    |       |     | 43    |     | 17         | 28 |
| Aldicarb sulfoxide                       |       |       |       |    |       |     | 43    |     | 17         | 28 |
| Aldrin                                   | 55    |       |       |    |       |     | 43    |     | 17         | 28 |
| Alkalinity                               |       |       | 66    |    |       |     |       |     | 10, 18, 19 | 24 |
| Aluminum                                 |       | 77-78 | 67    |    |       |     | 38    |     | 12, 18, 20 | 24 |
| Americium-241                            |       |       |       |    | 62-63 |     |       |     |            |    |
| Ametryn                                  |       |       |       |    |       |     |       |     | 17         |    |
| 2-Amino-1-methylbenzene<br>(o-Toluidine) |       |       |       |    |       |     | 41    |     | 16         |    |
| 4-Amino-2,6-dinitrotoluene               |       |       |       |    |       |     | 41    |     | 16         |    |
| 2-Amino-4,6-dinitrotoluene               |       |       |       |    |       |     | 41    |     | 16         |    |
| Ammonia as N                             |       | 76    | 68    |    |       |     | 39    |     | 10, 18, 19 |    |
| Ammonia as NH <sub>3</sub>               |       | 76    |       |    |       |     |       |     |            |    |
| Ammonium                                 | 57    |       | 68    |    |       |     |       |     |            |    |
| Ammonium as N                            | 76    |       |       |    |       |     |       |     |            |    |
| Ammonium as NH <sub>4</sub>              |       | 76    | 68    |    |       |     |       |     |            |    |
| tert-Amyl methyl ether (TAME)            |       |       |       |    |       |     |       |     |            | 27 |
| Anilazine                                |       |       |       |    |       |     |       |     | 17         |    |
| Aniline                                  | 55    |       |       |    |       |     | 41    |     | 16         |    |
| Anthracene                               | 57    |       |       |    |       |     | 41    |     | 16         | 30 |
| Antimony                                 | 56    | 77-78 | 67    |    |       |     | 38    |     | 12, 18, 20 | 24 |
| Aroclor                                  | 55    |       |       |    |       |     | 42    |     | 15         | 30 |
| Arsenic                                  | 56    | 77-78 | 67    |    |       |     | 38    |     | 12, 18, 20 | 24 |
| Atraton                                  |       |       |       |    |       |     |       |     | 17         |    |
| Atrazine                                 |       |       |       |    |       |     | 41    |     | 16, 17     | 28 |
| Azinphos-methyl (Guthion)                |       |       |       |    |       |     | 42    |     | 17         |    |
| Azobenzene                               |       |       |       |    |       |     |       |     | 16         |    |

| В                                  | AE | Cal   | LLCRM | MB | RChem | RGT | Soil  | UST | WP         | WS |
|------------------------------------|----|-------|-------|----|-------|-----|-------|-----|------------|----|
| Barium                             | 56 | 77-78 | 67    |    | 60-61 |     | 38    |     | 12, 18, 20 | 24 |
| Barium Perchlorate                 |    |       |       |    |       | 83  |       |     |            |    |
| Baygon                             |    |       |       |    |       |     |       |     | 17         | 28 |
| Bentazon                           |    |       |       |    |       |     | 41    |     | 15         | 30 |
| Benzaldehyde                       | 55 |       |       |    |       |     | 41    |     | 16         |    |
| Benzene                            | 54 |       | 68    |    |       |     | 39-40 |     | 14         | 27 |
| Benzidine                          | 55 |       |       |    |       |     | 41    |     | 16         |    |
| Benzo(a)anthracene                 | 55 |       |       |    |       |     | 41    |     | 16         | 30 |
| Benzo(a)pyrene                     | 55 |       |       |    |       |     | 41    |     | 16         | 30 |
| Benzo(b)fluoranthene               | 55 |       |       |    |       |     | 41    |     | 16         | 30 |
| Benzo(g,h,i)perylene               | 55 |       |       |    |       |     | 41    |     | 16         | 30 |
| Benzo(k)fluoranthene               | 55 |       |       |    |       |     | 41    |     | 16         | 30 |
| Benzoic acid                       |    |       |       |    |       |     | 41    |     | 15,16      |    |
| Benzyl alcohol                     | 55 |       |       |    |       |     | 41    |     | 16         |    |
| Beryllium                          | 56 | 77-78 | 67    |    |       |     | 38    |     | 12, 18, 20 | 24 |
| alpha-BHC                          | 55 |       |       |    |       |     | 43    |     | 17         |    |
| beta-BHC                           | 55 |       |       |    |       |     | 43    |     | 17         |    |
| delta-BHC                          | 55 |       |       |    |       |     | 43    |     | 17         |    |
| gamma-BHC (Lindane)                | 55 |       | 70    |    |       |     | 42 45 |     | 17         | 28 |
| Biochemical oxygen<br>demand (BOD) |    |       | 66    |    |       |     |       |     | 12, 18, 19 |    |
| Biphenyl                           |    |       |       |    |       |     | 41    |     |            |    |
| 1,1-Biphenyl                       |    |       |       |    |       |     |       |     | 16         |    |
| Bismuth                            |    | 77-78 |       |    | 62    |     |       |     |            |    |
| Boron                              |    | 78    | 67    |    |       |     | 38    |     | 12, 14, 18 | 24 |
| Bromacil                           |    |       |       |    |       |     |       |     | 17         | 28 |
| Bromate                            |    | 76    |       |    |       |     |       |     |            | 25 |
| Bromide                            | 57 | 76    |       |    |       |     | 39    |     | 14         | 25 |
| Bromine                            | 57 |       |       |    |       |     |       |     |            |    |
| Bromobenzene                       |    |       |       |    |       |     | 39-40 |     | 14         | 27 |

| <b>B</b> (continued)          | AE    | Cal | LLCRM | МВ | RChem | RGT | Soil  | UST   | WP | WS |
|-------------------------------|-------|-----|-------|----|-------|-----|-------|-------|----|----|
| Bromochloroacetic acid        |       |     |       |    |       |     |       |       |    | 25 |
| Bromochloromethane            |       |     |       |    |       |     | 39-40 |       | 14 | 27 |
| Bromodichloromethane          | 54    |     | 69    |    |       |     | 39-40 |       | 14 | 27 |
| Bromoform                     | 54    |     | 69    |    |       |     | 39-40 |       | 14 | 27 |
| Bromomethane                  | 54    |     |       |    |       |     | 39-40 |       | 14 | 27 |
| 4-Bromophenyl phenyl ether    | 55    |     |       |    |       |     | 41    |       | 16 |    |
| BTEX                          |       |     |       |    |       |     | 39    | 48-49 | 15 |    |
| BTEX & MTBE                   |       |     |       |    |       |     | 39    | 48    | 14 |    |
| Butachlor                     |       |     |       |    |       |     |       |       | 17 | 28 |
| 2-Butanone (MEK)              | 54-55 |     |       |    |       |     | 39-40 |       | 14 |    |
| tert-Butyl Alcohol            |       |     |       |    |       |     |       |       |    | 27 |
| Butylate                      |       |     |       |    |       |     |       |       | 17 |    |
| Butyl benzyl phthalate        | 55    |     |       |    |       |     | 41    |       | 16 | 30 |
| Butyraldehyde (butanal)       | 55    |     |       |    |       |     |       |       |    |    |
| 2,2'-Oxybix (1-Chloropropane) |       |     |       |    |       |     | 41    |       |    |    |

| 2,2'-Oxybix (1-Chloropropane)         |          |       |       |      |               |     | 41          |     |               |    |
|---------------------------------------|----------|-------|-------|------|---------------|-----|-------------|-----|---------------|----|
| С                                     | AE       | Cal   | LLCRM | MB   | RChem         | RGT | Soil        | UST | WP            | WS |
|                                       |          |       |       | INID | HOHEIII       | nai |             | 031 | 12, 18,       |    |
| Cadmium                               | 56       | 77-78 | 67    |      |               |     | 38          |     | 20            | 24 |
| Calcium                               |          | 77-78 | 66    |      |               |     | 38          |     | 10, 18,<br>19 | 24 |
| Calcium hardness as CaCO <sub>3</sub> |          |       |       |      |               |     |             |     | 10, 18,<br>19 | 24 |
| Caprolactam                           |          |       |       |      |               |     | 41          |     | 16            |    |
| Carbaryl                              |          |       |       |      |               |     | 43          |     | 17            | 28 |
| Carbazole                             | 55       |       |       |      |               |     | 41          |     | 16            |    |
| Carbofuran                            |          |       |       |      |               |     | 43          |     | 17            | 28 |
| Carbon disulfide                      | 54       |       |       |      |               |     | 39-40       |     | 14            |    |
| Carbon tetrachloride                  | 54       |       | 68    |      |               |     | 39-40       |     | 14            | 27 |
| Carbophenothion                       |          |       |       |      |               |     |             |     | 17            |    |
| Chemical oxygen demand (COD)          |          | 76    | 66    |      |               |     |             |     | 12, 18,<br>19 |    |
| Chloral Hydrate                       |          |       |       |      |               |     |             |     |               | 25 |
| Chloramben                            |          |       |       |      |               |     | 41          |     | 15            | 29 |
| Chlorate                              |          | 76    |       |      |               |     | 40          |     | 17            | 25 |
| Chlordane                             | 55       |       |       |      |               |     | 43          |     | 17            | 28 |
| alpha-Chlordane<br>gamma-Chlordane    |          |       |       |      |               |     |             |     | 17<br>17      |    |
| Chloride                              |          | 76-77 | 66    |      |               |     | 39          |     | 10, 18,       | 24 |
| Chlorine                              | 57       |       | 66    |      |               |     |             |     | 19            | 25 |
| Chlorite                              |          | 76    |       |      |               |     |             |     |               | 25 |
| 4-Chloro-3-methylphenol               | 55       |       |       |      |               |     | 41          |     | 16            |    |
| 4-Chloroaniline                       | 55       |       |       |      |               |     | 41          |     | 16            |    |
| Chlorobenzene                         | 54       |       | 68    |      |               |     | 39-40       |     | 14            | 27 |
| Chlorodibromomethane                  | 54       |       |       |      |               |     | 39-40       |     | 14            | 27 |
| Chloroethane                          | 54       |       |       |      |               |     | 39-40       |     | 14            | 27 |
| bis(2-Chloroethoxy)methane            | 55       |       |       |      |               |     | 41          |     | 16            |    |
| 2-Chloroethyl vinyl ether             | 54       |       |       |      |               |     | 38-40       |     | 14            |    |
| bis(2-chloroethyl)ether               | 55       |       |       |      |               |     | 41          |     | 16            | 07 |
| Chloroform                            | 54       |       |       |      |               |     | 39-40       |     | 14            | 27 |
| Chloromethane<br>1-Chloronaphthalene  | 54<br>55 |       |       |      |               |     | 39-40<br>41 |     | 14<br>16      | 27 |
| 2-Chloronaphthalene                   | 55       |       |       |      |               |     | 41          |     | 16            |    |
| 2-Chlorophenol                        | 55       |       |       |      |               |     | 41          |     | 16            |    |
| 4-Chlorophenyl phenyl ether           | 55       |       |       |      |               |     | 41          |     | 16            |    |
| 2-Chlorotoluene                       | 54       |       |       |      |               |     | 39-40       |     | 14            | 27 |
| 2-Chlorotoluene                       | 54       |       |       |      |               |     | 39-40       |     | 14            | 27 |
| Chlorpyrifos                          |          |       |       |      |               |     | 43          |     | 17            | 26 |
| Chlortoluron                          |          |       |       |      |               |     |             |     |               |    |
| Chromium                              | 56       | 77-78 | 67    |      |               |     | 38          |     | 12, 18,<br>20 | 24 |
| Chrysene                              | 55       |       |       |      |               |     | 41          |     | 16            | 30 |
| Cobalt                                | 56       | 77-78 | 67    |      | 61, 62,<br>63 |     | 38          |     | 12, 18,<br>20 |    |
| Coliforms                             |          |       |       | 34   |               |     |             |     |               |    |
| Color                                 |          |       | 66    |      |               |     |             |     | 13            | 26 |
| Specific conductance at 25 °C         |          |       |       |      |               |     |             |     | 10,18         | 24 |
| Conductivity                          | 56       | 77-78 | 66    |      |               |     | 38          |     | 19<br>12, 18, | 24 |
|                                       | JU       | 11-10 | U     |      |               |     | 30          |     | 20            |    |
| Corrosivity Corrosivity/pH            |          |       |       |      |               |     | 38          |     |               | 26 |
| Crotonaldehyde                        | 55       |       |       |      |               |     | 38          |     |               |    |
| Curium                                | 33       |       |       |      | 64            |     |             |     |               |    |
| Cyanazine                             |          |       |       |      | 04            |     |             |     | 17            |    |
| Cyanide                               |          | 76    | 66    |      |               |     | 39          |     | 13, 20        | 25 |
| Cyclohexane                           | 54       |       |       |      |               |     |             |     |               |    |

| D                              | AE       | Cal | LLCRM | MB | RChem | RGT | Soil           | UST     | WP     | WS       |
|--------------------------------|----------|-----|-------|----|-------|-----|----------------|---------|--------|----------|
| 2,4-D                          |          |     |       |    |       |     | 41             |         | 15     | 30       |
| Dacthal diacid (DCPA)          |          |     |       |    |       |     | 41             |         | 15     | 30       |
| Dalapon                        |          |     |       |    |       |     | 42             |         | 15     | 30       |
| 2,4-DB                         |          |     |       |    |       |     | 41             |         | 15     | 30       |
| 4,4'-DDD                       | 57       |     |       |    |       |     | 43             |         | 17     |          |
| 4,4'-DDE                       | 55       |     | 70    |    |       |     | 43             |         | 17     |          |
| 2,4-DDT                        |          |     |       |    |       |     |                |         |        |          |
| 4,4'-DDT                       | 55       |     |       |    |       |     | 43             |         | 17     |          |
| Decachlorobiphenyl             |          |     |       |    |       |     |                |         |        | 30       |
| n-Decane                       |          |     |       |    |       |     |                |         | 16     |          |
| Deethyl atrazine               |          |     |       |    |       |     |                |         | 17     |          |
| Deisopropyl atrazine           |          |     |       |    |       |     |                |         | 17     |          |
| Demeton O & S                  |          |     |       |    |       |     | 43             |         | 17     |          |
| Diaminoatrazine                |          |     |       |    |       |     |                |         | 17     |          |
| Diazinon                       |          |     |       |    |       |     | 43             |         | 17     | 28       |
| Dibenz(a,h)anthracene          | 55       |     |       |    |       |     | 41             |         | 16     | 30       |
| Dibenzofuran                   | 55       |     |       |    |       |     | 41             |         | 16     |          |
| 1,2-Dibromo-3-chloropropane    | F.4      |     |       |    |       |     | 20.40          |         | 14.10  | 20       |
| (DBCP)                         | 54       |     |       |    |       |     | 39-40          |         | 14-16  | 30       |
| Dibromoacetic Acid             |          |     |       |    |       |     |                |         |        | 25       |
| 1,2-Dibromoethane (EDB)        | 54       |     |       |    |       |     | 39-40          |         | 14-16  |          |
| Dibromomethane                 | 54       |     |       |    |       |     | 39-40          |         | 14     | 27       |
| Dicamba                        |          |     |       |    |       |     | 41             |         | 15     | 30       |
| Dichloroacetic Acid            |          |     |       |    |       |     |                |         |        | 25       |
| 2,3-Dichloroaniline            |          |     |       |    |       |     |                |         | 16     |          |
| 1,2-Dichlorobenzene            | 54-55    |     | 68    |    |       |     | 39-41          |         | 14, 16 | 27       |
| 1,3-Dichlorobenzene            | 54-55    |     |       |    |       |     | 39-41          |         | 14, 16 | 27       |
| 1.4-Dichlorobenzene            | 54-55    |     | 68    |    |       |     | 41             |         | 14, 16 | 30       |
| 3,3'-Dichlorobenzidine         | 55       |     | 30    |    |       |     | 41             |         | 16     |          |
| 3.5-Dichlorobenzoic Acid       | 5.5      |     |       |    |       |     |                |         |        | 30       |
| Dichlorodifluoromethane        | 54       |     |       |    |       |     | 39-40          |         | 14     | 27       |
| 1.1-Dichloroethane             | 54       |     |       |    |       |     | 39-40          |         | 14     | 27       |
| 1,1-Dichloroethene             | 54       |     |       |    |       |     | 39-40          |         | 14     | 21       |
| 1,2-Dichloroethane             | 54       |     | 68    |    |       |     | 39-40          |         | 14     | 27       |
| cis-1,2-Dichloroethene         | 54       |     | 00    |    |       |     | 39-40          |         | 14     | 21       |
| trans-1,2-Dichloroethene       | 54       |     |       |    |       |     |                |         | 14     |          |
|                                |          |     | 00    |    |       |     | 20.40          |         | 14     | 27       |
| 1,1-Dichloroethylene           | 54<br>54 |     | 68    |    |       |     | 39-40<br>39-40 |         |        | 27<br>27 |
| cis-1,2-Dichloroethylene       |          |     |       |    |       |     | 39-40          |         |        |          |
| trans-1,2-Dichloroethylene     | 54       |     | 68    |    |       |     |                |         | 10     | 27       |
| 2,4-Dichlorophenol             | 55       |     |       |    |       |     | 41             |         | 16     |          |
| 2,6-Dichlorophenol             | 55       |     |       |    |       |     | 41             |         | 16     |          |
| 1,2-Dichloropropane            | 54       |     | 68    |    |       |     | 39-40          |         | 14     | 27       |
| 1,3-Dichloropropane            |          |     |       |    |       |     | 39-40          |         | 14     | 27       |
| 2,2-Dichloropropane            |          |     |       |    |       |     | 39-40          |         | 14     | 27       |
| 1,1-Dichloropropene            |          |     |       |    |       |     | 39-40          |         | 14     | 27       |
| cis-1,3-Dichloropropene        | 54       |     |       |    |       |     |                |         | 14     | 27       |
| trans-1,3-Dichloropropene      | 54       |     |       |    |       |     |                |         | 14     | 27       |
| cis-1,3-Dichloropropylene      | 54       |     |       |    |       |     | 39-40          |         |        |          |
| trans-1,3-Dichloropropylene    | 54       |     |       |    |       |     | 39-40          |         |        |          |
| 1,2-Dichlorotetrafluoroethane  | 54       |     |       |    |       |     |                |         |        |          |
| Dichlorprop                    |          |     |       |    |       |     | 41             |         | 15     | 30       |
| Dichlorvos (DDVP)              |          |     |       |    |       |     | 43             |         | 17     |          |
| 1,1-Dichloroethylene           | 56       |     | 72    |    |       |     | 42, 43         |         |        | 30       |
| Dieldrin                       | 55       |     |       |    |       |     | 43             |         | 17     | 28       |
| Diesel range organics          |          |     |       |    |       |     | 41             | 48, 49, | 16     |          |
| (DRO)                          |          |     |       |    |       |     | 41             | 50      | 10     |          |
| Diethylene glycol              |          |     |       |    |       |     | 41             |         | 16     |          |
| Diethyl phthalate              | 55       |     |       |    |       |     | 41             |         | 16     | 30       |
| Di-isopropylether (DIPE)       |          |     |       |    |       |     |                |         |        | 27       |
| Dimethoate                     |          |     |       |    |       |     |                |         | 17     |          |
| Dimethyl phthalate             | 55       |     |       |    |       |     | 41             |         | 16     | 30       |
| 2,5-Dimethylbenzaldehyde       | 55       |     |       |    |       |     |                |         |        |          |
| 2,4-Dimethylphenol             | 55       |     |       |    |       |     | 41             |         | 16     |          |
| Di-n-butyl phthalate           | 55       |     |       |    |       |     | 41             |         | 16     | 30       |
| 1,3-Dinitrobenzene             |          |     |       |    |       |     | 41             |         | 16     |          |
| 2,4-Dinitrophenol              | 55       |     |       |    |       |     | 41             |         | 16     |          |
| 2,4-Dinitrotoluene             | 55       |     |       |    |       |     | 41             |         | 16     |          |
| 2,6-Dinitrotoluene             | 55       |     |       |    |       |     | 41             |         | 16     |          |
| Di-n-octyl phthalate           | 55       |     |       |    |       |     | 41             |         | 16     | 30       |
| Dinoseb                        |          |     |       |    |       |     | 41             |         | 15     | 30       |
| Dioxacarb                      |          |     |       |    |       |     | 43             |         |        |          |
| 1,4 Dioxane                    |          |     |       |    |       |     | 39             |         | 14     | 27       |
| Dioxathion                     |          |     |       |    |       |     | 03             |         | 17     | 21       |
| Dioxamion                      |          |     |       |    |       |     |                |         | 17     | 30       |
|                                |          |     |       |    |       |     |                |         | 10     | 30       |
| 1,2-Diphenylhydrazine          |          |     |       |    |       |     |                |         | 16     | 00       |
| Diquat                         |          |     |       |    |       |     |                |         |        | 30       |
| Dissolved organic carbon (DOC) |          |     | 66    |    |       |     |                |         |        | 26       |
| Dissolved Oxygen               |          |     |       |    |       |     |                |         | 13     |          |
| Disulfoton                     |          |     |       |    |       |     | 43             |         | 17     |          |

| E                             | AE | Cal | LLCRM | MB | RChem | RGT | Soil  | WP | WS |
|-------------------------------|----|-----|-------|----|-------|-----|-------|----|----|
| E. coli                       |    |     |       | 34 |       |     |       |    |    |
| Endosulfan I and II           | 55 |     |       |    |       |     | 43    | 17 |    |
| Endosulfan sulfate            | 55 |     |       |    |       |     | 43    | 17 |    |
| Endothall                     |    |     |       |    |       |     |       |    | 30 |
| Endrin                        | 55 |     |       |    |       |     | 43    | 17 | 28 |
| Endrin aldehyde               | 55 |     |       |    |       |     | 43    | 17 |    |
| Endrin ketone                 | 55 |     |       |    |       |     | 43    | 17 |    |
| EPTC (Eptam)                  |    |     |       |    |       |     |       | 17 |    |
| Ethion                        |    |     |       |    |       |     |       | 17 |    |
| Ethoprop                      |    |     |       |    |       |     |       | 17 | 26 |
| Ethyl tert-butyl ether (ETBE) |    |     |       |    |       |     |       |    | 27 |
| Ethylbenzene                  | 54 |     | 68    |    |       |     | 39-40 | 14 | 27 |
| Ethylene dibromide (EDB)      |    |     |       |    |       |     |       |    | 30 |
| Ethylene glycol               |    |     |       |    |       |     | 41    | 16 |    |
| bis(2-Ethylhexyl)adipate      |    |     |       |    |       |     |       |    | 30 |
| bis(2-Ethylhexyl)phthalate    | 55 |     |       |    |       |     | 41    | 16 | 30 |
| p-Ethyltoluene                | 54 |     |       |    |       |     |       |    |    |

| F                        | AE | Cal   | LLCRM | MB | RChem | RGT | Soil | UST | WP            | WS |
|--------------------------|----|-------|-------|----|-------|-----|------|-----|---------------|----|
| Famphur                  |    |       |       |    |       |     |      |     | 17            |    |
| Fecal Coliform WP        |    |       |       | 34 |       |     |      |     |               |    |
| Fecal Coliform WP        |    |       |       | 34 |       |     |      |     |               |    |
| Ferrous Ammonium Sulfate |    |       |       |    |       | 83  |      |     |               |    |
| Flashpoint               |    |       |       |    |       |     | 38   |     |               |    |
| Fluoranthene             | 55 |       |       |    |       |     | 41   |     | 16            | 30 |
| Fluorene                 | 55 |       |       |    |       |     | 41   |     | 16            | 30 |
| Fluoride                 | 57 | 76-77 | 66    |    |       |     | 39   |     | 10, 18,<br>19 | 24 |
| Fluoride Buffer          |    |       |       |    |       | 83  |      |     |               |    |
| Fluorotrichloromethane   |    |       |       |    |       |     |      |     |               | 27 |
| Fonofos                  |    |       |       |    |       |     |      |     | 17            |    |
| Formaldehyde             | 55 |       |       |    |       |     |      |     | 14            |    |
| Free Residual Chlorine   |    |       |       |    |       |     |      |     | 14            | 25 |

| G                             | AE | Cal | LLCRM | МВ | RChem         | RGT | Soil | UST    | WP | WS |
|-------------------------------|----|-----|-------|----|---------------|-----|------|--------|----|----|
| Gasoline range organics (GRO) |    |     |       |    |               |     | 39   | 48, 50 | 15 |    |
| Glyphosate                    |    |     |       |    |               |     |      |        |    | 30 |
| Gross Alpha                   |    |     |       |    | 60, 62,<br>63 |     |      |        |    |    |
| Gross Alpha/Beta              |    |     |       |    | 60, 62,<br>63 |     |      |        |    |    |
| Gross Beta                    |    |     |       |    | 60, 62,<br>63 |     |      |        |    |    |

| Н                               | AE    | Cal | LLCRM   | МВ   | RChem | RGT | Soil   | UST | WP     | WS  |
|---------------------------------|-------|-----|---------|------|-------|-----|--------|-----|--------|-----|
| Halides                         | 57    | Oui | EEGIIII | IIID | HOHOH | Hai | COII   | 001 | 13     | 110 |
| Halogens                        | 57    |     |         |      |       |     |        |     | 10     |     |
| HEM                             | J/    |     |         |      |       |     |        | 50  | 13     |     |
| Heptachlor                      | 55    |     |         |      |       |     | 40-43  | 30  | 17     | 28  |
|                                 | 55    |     |         |      |       |     | 40-43  |     | 17     | 28  |
| Heptachlor epoxide              | 54    |     |         |      |       |     | 40-43  |     | 1/     | 28  |
| n-Heptane                       | 94    |     |         | 07   |       |     |        |     |        |     |
| Heterotrophic Hexachlorobenzene |       |     |         | 37   |       |     | 40.41  |     | 10     | -00 |
|                                 | 55    |     |         |      |       |     | 40, 41 |     | 16     | 28  |
| Hexachlorobutadiene             | 54-55 |     |         |      |       |     | 40-41  |     | 14, 16 | 27  |
| Hexachlorocyclopentadiene       | 55    |     |         |      |       |     | 41     |     | 16     | 28  |
| Hexachloroethane                | 55    |     |         |      |       |     | 40-41  |     | 14, 16 |     |
| Hexaldehyde (hexanal)           | 55    |     |         |      |       |     |        |     |        |     |
| n-Hexane                        | 54    |     |         |      |       |     | 39     |     |        |     |
| n-Hexane extractable material   |       |     |         |      |       |     | 39     |     |        |     |
| 2-Hexanone                      | 54    |     |         |      |       |     | 39, 40 |     | 14     |     |
| Hexavalent chromium             | 56    |     | 67      |      |       |     | 38     |     | 14,21  | 24  |
| Hexazinone                      |       |     |         |      |       |     |        |     | 17     |     |
| HMX                             |       |     |         |      |       |     | 41     |     | 16     |     |
| Hydrogen bromide                | 57    |     |         |      |       |     |        |     |        |     |
| Hydrogen chloride               | 57    |     |         |      |       |     |        |     |        |     |
| Hydrogen fluoride               | 57    |     |         |      |       |     |        |     |        |     |
| 3-Hydroxycarbofuran             |       |     |         |      |       |     | 43     |     | 17     | 28  |

| AE Air & Emissions   | RChem | Radiochemistry        | WP  | Water Pollution |
|----------------------|-------|-----------------------|-----|-----------------|
| Cal Calibration      | RGT   | Reagents              | WS  | Water Supply    |
| LLCRM Low-Level CRMs | Soil  | Soil                  |     |                 |
| MB Microbiology      | UST   | Underground Storage T | ank |                 |

| I                       | AE | Cal   | LLCRM | MB | RChem  | RGT | Soil   | UST | WP            | WS |
|-------------------------|----|-------|-------|----|--------|-----|--------|-----|---------------|----|
| Ignitability/Flashpoint |    |       |       |    |        |     | 38     |     |               |    |
| Indeno(1,2,3-cd)pyrene  | 55 |       |       |    |        |     | 41     |     | 16            | 30 |
| lodide                  |    | 76    |       |    |        |     |        |     |               |    |
| Iron                    |    | 77,78 | 67    |    | 62, 63 |     | 38, 43 |     | 12, 18,<br>20 | 24 |
| Isophorone              | 55 |       |       |    |        |     | 41     |     | 16            |    |
| Isopropylbenzene        | 54 |       |       |    |        |     | 39, 40 |     | 14            | 27 |
| Isopropyltoluene        | 54 |       |       |    |        |     | 39, 40 |     | 14            | 27 |
| Isovaleraldehyde        | 55 |       |       |    |        |     |        |     |               |    |
| Isovaleraldehyde        | 57 |       |       |    |        |     |        |     |               |    |

| L         | AE | Cal   | LLCRM | MB | RChem | RGT | Soil   | UST | WP            | WS |
|-----------|----|-------|-------|----|-------|-----|--------|-----|---------------|----|
| Lanthanum |    | 78    |       |    |       |     |        |     |               |    |
| Lead      | 56 | 77,78 | 67    |    | 62    |     | 38, 43 |     | 12, 18,<br>20 | 24 |
| Lithium   |    | 77    |       |    |       |     | 38     |     | 12            |    |

| M                              | AE     | Cal          | LLCRM | MB | RChem  | RGT | Soil   | WP            | WS |
|--------------------------------|--------|--------------|-------|----|--------|-----|--------|---------------|----|
| Magnesium                      |        | 76,77,<br>78 | 66    |    |        |     | 38, 43 | 10, 18,<br>19 | 24 |
| Malathion                      |        |              |       |    |        |     | 43     | 17            |    |
| Manganese                      | 55     | 77,78        | 67    |    | 62, 63 | 83  | 38, 43 | 12, 18,<br>20 | 24 |
| MBAS-Surfactants               |        | 76           |       |    |        |     |        | 13            | 26 |
| MCPA                           |        |              |       |    |        |     | 42     | 15            |    |
| MCPB                           |        |              |       |    |        |     |        |               |    |
| MCPP                           |        |              |       |    |        |     | 42     | 15            |    |
| Mercury                        | 56     | 77           | 67    |    |        |     | 38, 43 | 12, 20        | 24 |
| Metals & Cyanide Blank Sand    |        |              |       |    |        |     | 43     |               |    |
| Metals & Cyanide Blank Soil    |        |              |       |    |        |     | 43     |               |    |
| Methiocarb                     |        |              |       |    |        |     | 43     | 17            | 28 |
| Methomyl                       |        |              |       |    |        |     | 45     | 17            | 28 |
| Methoxychlor                   | 55     |              |       |    |        |     | 40,43  | 17            | 28 |
| Methyl ethyl ketone (MEK)      | 55, 55 |              |       |    |        |     | 39, 40 | 17            | 27 |
| Methyl tert-butyl ether (MTBE) | 54     |              |       |    |        |     | 39, 40 | 14            | 27 |
| 4-Methyl-2-pentanone (MIBK)    | 54     |              |       |    |        |     | 39, 40 | 14            |    |
| 2-Methyl-4,6-dinitrophenol     | 55     |              |       |    |        |     | 41     | 16            |    |
| Methylene chloride             | 54     |              | 68    |    |        |     | 39, 40 | 14            | 27 |
| 1-Methylnaphthalene            |        |              |       |    |        |     |        | 16            |    |
| 2-Methylnaphthalene            | 55     |              |       |    |        |     | 41     | 16            |    |
| 2-Methylphenol                 | 55     |              |       |    |        |     | 40, 41 | 16            |    |
| 3 & 4-Methylphenol             |        |              |       |    |        |     | 40, 41 | 16            |    |
| 2-Methylphenol (o-Cresol)      | 55     |              |       |    |        |     |        |               |    |
| 4-Methylphenol (p-Cresol)      | 55     |              |       |    |        |     |        |               |    |
| Metolachlor                    |        |              |       |    |        |     |        | 17            | 28 |
| Metribuzin                     |        |              |       |    |        |     |        | 17            | 28 |
| Mevinphos                      |        |              |       |    |        |     |        |               |    |
| Molinate (Ordram)              |        |              |       |    |        |     |        |               | 28 |
| Molybdenum                     |        | 77,78        | 67    |    |        |     | 38     | 12, 18,<br>20 | 24 |
| Monochloroacetic Acid          |        |              |       |    |        |     |        |               | 25 |

| N                          |        | Cal   | LLCRM | МВ | RChem | RGT | Soil          | WP            | WS     |
|----------------------------|--------|-------|-------|----|-------|-----|---------------|---------------|--------|
| Naphthalene                | 54, 55 |       |       |    |       |     | 39,<br>40, 41 | 14, 16        | 27, 30 |
| Napropamide                |        |       |       |    |       |     |               | 17            |        |
| Nickel                     | 56     | 77,78 | 67    |    |       |     | 38, 43        | 12, 18,<br>20 | 24     |
| Nitrate as N               |        | 76,77 |       |    |       |     | 38, 43        | 10,18         | 24     |
| Nitrate as NO <sub>3</sub> |        | 76    | 68    |    |       |     |               |               |        |
| Nitrate plus nitrite as N  |        |       |       |    |       |     | 39            | 10,18         | 24     |
| Nitrite as N               |        | 76    |       |    |       |     | 39            | 10,18         | 24     |
| Nitrite as NO <sub>2</sub> |        |       | 68    |    |       |     |               |               |        |
| 2-Nitroaniline             | 55     |       |       |    |       |     | 41            | 16            |        |
| 3-Nitroaniline             | 55     |       |       |    |       |     | 41            | 16            |        |
| 4-Nitroaniline             | 55     |       |       |    |       |     | 41            | 16            |        |
| Nitrobenzene               | 54, 55 |       |       |    |       |     | 39,<br>40, 41 | 14, 16        |        |
| 2-Nitrophenol              | 55     |       |       |    |       |     | 41            | 16            |        |
| 4-Nitrophenol              | 55     |       |       |    |       |     | 41            | 15,16         | 30     |
| n-Butylbenzene             |        |       |       |    |       |     | 39-40         | 14            | 27     |
| N-Nitrosodiethylamine      | 55     |       |       |    |       |     | 41            | 16            |        |

| N (continued)                    | AE | Cal | LLCRM | MB | RChem | RGT | Soil | UST | WP | WS |
|----------------------------------|----|-----|-------|----|-------|-----|------|-----|----|----|
| N-Nitrosodimethylamine<br>(NDMA) | 55 |     |       |    |       |     | 41   |     | 16 |    |
| N-Nitroso-di-n-propylamine       | 55 |     |       |    |       |     | 41   |     | 16 |    |
| N-Nitrosodiphenylamine           | 55 |     |       |    |       |     | 41   |     | 16 |    |
| 2-Nitrotoluene                   |    |     |       |    |       |     | 41   |     | 16 |    |
| 3-Nitrotoluene                   |    |     |       |    |       |     | 41   |     | 16 |    |
| 4-Nitrotoluene                   |    |     |       |    |       |     | 41   |     | 16 |    |

| 0                            | AE | Cal | LLCRM | MB | RChem | RGT | Soil | UST | WP            | WS |
|------------------------------|----|-----|-------|----|-------|-----|------|-----|---------------|----|
| n-Octadecane                 |    |     |       |    |       |     |      |     | 16            |    |
| Oil & Grease                 |    |     |       |    |       |     | 39   |     | 11, 18,<br>19 |    |
| ortho-Phosphate as P         |    |     |       |    |       |     |      |     | 10, 11,<br>19 | 27 |
| Organophosphorus Pesticides  |    |     |       |    |       |     | 43   |     | 17            | 28 |
| Oxamyl                       |    |     |       |    |       |     | 43   |     | 17            | 28 |
| Oxides of nitrogen           | 57 |     |       |    |       |     |      |     |               |    |
| 2,2'-Oxybis(1-Chloropropane) |    |     |       |    |       |     |      |     | 16            |    |


| P                            | AE | Cal   | LLCRM | MB | RChem         | RGT   | Soil   |        | WP            | WS |
|------------------------------|----|-------|-------|----|---------------|-------|--------|--------|---------------|----|
| Paraquat                     |    |       |       |    |               |       |        |        |               | 30 |
| Parathion                    |    |       |       |    |               |       | 43     |        | 17            |    |
| Particulate matter           | 57 |       |       |    |               |       |        |        |               |    |
| PCBs in Oil                  |    |       |       |    |               |       | 42     |        | 15            |    |
| PCBs in Soil                 |    |       |       |    |               |       | 42     |        |               |    |
| PCBs in Water                |    |       |       |    |               |       |        |        | 15            | 30 |
| Pentachlorobenzene           | 55 |       |       |    |               |       | 41     |        | 16            |    |
| Pentachlorophenol            | 55 |       |       |    |               |       | 40, 41 |        | 15, 16        | 30 |
| Petroleum Hydrocarbons Fuels |    |       |       |    |               |       | 40     | 48, 50 | 11            |    |
| Perchlorate                  |    | 76    |       |    |               |       |        |        |               | 26 |
| PFAS Analytes                |    |       |       |    |               |       | 43     |        | 15            | 30 |
| pH                           |    | 78    | 66    |    |               | 82    | 38     |        | 14, 18, 19    | 26 |
| Phenanthrene                 | 55 |       |       |    |               |       | 41     |        | 16            | 30 |
| Phenol                       | 55 | 76    |       |    |               |       | 41     |        | 13, 16        |    |
| Phenolphthalein              |    |       |       |    |               | 83    |        |        |               |    |
| Phorate                      |    |       |       |    |               |       | 43     |        | 17            |    |
| Phosmet                      |    |       |       |    |               |       |        |        | 17            |    |
| ortho-Phosphate as P         |    |       |       |    |               |       |        |        | 10, 18,<br>19 | 25 |
| Phosphate as P               |    | 76,77 |       |    |               |       | 39     |        |               |    |
| Phosphate as PO <sub>4</sub> |    | 76    |       |    |               |       |        |        |               |    |
| Phosphorus                   | 56 | 77,78 | 68    |    |               |       |        |        |               |    |
| Picloram                     |    |       |       |    |               |       | 42     |        | 15            | 30 |
| Plutonium                    |    |       |       |    | 61, 62,<br>63 |       |        |        |               |    |
| Potassium                    |    | 77,78 | 66    |    | 62            |       | 38     |        | 10, 18,<br>19 | 24 |
| Potassium Cyanide (KCN)      |    |       |       |    |               | 83    |        |        |               |    |
| Potassium Dichromate         |    |       |       |    |               | 83    |        |        |               |    |
| Potassium Hydroxide (KOH)    |    |       |       |    |               | 82,83 |        |        |               |    |
| Potassium Permanganate       |    |       |       |    |               | 82    |        |        |               |    |
| Promecarb                    |    |       |       |    |               |       | 43     |        |               |    |
| Prometon                     |    |       |       |    |               |       |        |        | 17            | 28 |
| Prometryn                    |    |       |       |    |               |       |        |        | 17            |    |
| Pronamide                    |    |       |       |    |               |       |        |        | 17            |    |
| Propachlor                   |    |       |       |    |               |       |        |        | 17            | 28 |
| Propazine                    |    |       |       |    |               |       |        |        | 17            |    |
| Propham                      |    |       |       |    |               |       | 43     |        | 17            |    |
| Propionaldehyde (propanal)   | 55 |       |       |    |               |       |        |        |               |    |
| Propoxur                     |    |       |       |    |               |       | 43     |        |               |    |
| n-Propylbenzene              | 55 |       |       |    |               |       | 39, 40 |        | 14            | 27 |
| Propylene                    | 54 |       |       |    |               |       |        |        |               |    |
| Propylene glycol             |    |       |       |    |               |       | 41     |        | 16            |    |
| Pyrene                       | 55 |       |       |    |               |       | 41     |        | 16            | 30 |
| Pyridine                     | 55 |       |       |    |               |       | 40, 41 |        | 16            |    |

| R                            | Cal | LLCRM | MB | RChem  | RGT | Soil | UST | WP | WS |
|------------------------------|-----|-------|----|--------|-----|------|-----|----|----|
| Radium                       |     |       |    | 60, 61 |     |      |     |    |    |
| RDX                          |     |       |    |        |     | 41   |     | 16 |    |
| Residual Range Organic (RRO) |     |       |    |        |     |      | 49  |    |    |
| Ronnel                       |     |       |    |        |     | 43   |     | 17 |    |

| S                              | AE | Cal   | LLCRM | MB | RChem             | RGT | Soil   |    | WP            | WS |
|--------------------------------|----|-------|-------|----|-------------------|-----|--------|----|---------------|----|
| sec-Butylbenzene               |    |       |       |    |                   |     | 39, 40 |    | 14            | 27 |
| Selenium                       | 56 | 77,78 | 67    |    |                   |     | 38     |    | 12, 18,<br>20 | 24 |
| Settleable solids              |    |       |       |    |                   |     |        |    | 10            |    |
| SGT-HEM                        |    |       |       |    |                   |     |        | 50 | 11            |    |
| Silica                         |    | 77    |       |    |                   |     |        |    | 11, 13        | 26 |
| Silicon                        |    | 77    |       |    |                   |     |        |    |               |    |
| Silver                         | 56 | 77,78 | 67    |    |                   |     | 38, 43 |    | 12, 18,<br>20 | 24 |
| Silver Nitrate                 |    |       |       |    |                   | 83  |        |    |               |    |
| Simazine                       |    |       |       |    |                   |     |        |    | 17            | 28 |
| Sodium                         |    | 77,78 | 66    |    |                   |     | 38, 42 |    | 10, 18,<br>19 | 24 |
| Sodium Carbonate               |    |       |       |    |                   | 83  |        |    |               |    |
| Sodium Hydroxide               |    |       |       |    |                   | 83  |        |    |               |    |
| Sodium Thiosulfate             |    |       |       |    |                   | 83  |        |    |               |    |
| Stirophos (tetrachlorovinphos) |    |       |       |    |                   |     | 43     |    | 17            |    |
| Strontium                      |    | 77,78 | 67    |    | 60, 61,<br>62, 63 |     | 38     |    | 12, 18,<br>20 |    |
| Styrene                        | 54 |       | 68    |    |                   |     | 39, 40 |    | 14            | 27 |
| Sulfate                        |    | 76,77 | 66    |    |                   |     | 39     |    | 10, 18,<br>19 | 24 |
| Sulfur dioxide                 | 57 |       |       |    |                   |     |        |    |               |    |
| Sulfuric acid                  | 57 |       |       |    |                   |     |        |    |               |    |

| T                             | AE | Cal   | LLCRM  | MB | RChem         | RGT | Soil   | WP                | WS |
|-------------------------------|----|-------|--------|----|---------------|-----|--------|-------------------|----|
| 2,4,5-T                       |    |       |        |    |               |     |        | 15                | 30 |
| Terbacil                      |    |       |        |    |               |     |        | 17                |    |
| Terbufos                      |    |       |        |    |               |     | 43     | 17                |    |
| Tert-Butylbenzene             |    |       |        |    |               |     |        | 14                |    |
| 1,2,4,5-Tetrachlorobenzene    | 55 |       |        |    |               |     | 39, 40 | 16                |    |
| 1,1,1,2-Tetrachloroethane     | 54 |       |        |    |               |     | 41     | 14                | 27 |
| 1,1,2,2-Tetrachloroethane     | 54 |       |        |    |               |     | 41     | 14                | 27 |
| Tetrachloroethene             | 54 |       | 68     |    |               |     | 39     | 14                |    |
| Tetrachloroethylene           | 54 |       |        |    |               |     | 40     | 14                | 27 |
| 2,3,4,6-Tetrachlorophenol     | 55 |       |        |    |               |     | 41     | 16                |    |
| Tetraethylene glycol          |    |       |        |    |               |     | 41     | 16                |    |
| Tetryl                        |    |       |        |    |               |     | 41     | 16                |    |
| Thallium                      | 56 | 77,78 | 67     |    |               |     | 38, 43 | 12, 18,<br>20     | 24 |
| Thiobencarb                   |    |       |        |    |               |     |        |                   | 28 |
| Thorium                       |    | 77    |        |    | 60, 62,<br>63 |     |        |                   |    |
| Tin                           |    | 77,78 |        |    |               |     | 38     | 12                |    |
| Titanium                      |    | 77,78 |        |    |               |     | 38     | 12,20             |    |
| TISAB                         |    |       |        |    |               | 83  |        |                   |    |
| Tolualdehyde                  | 55 |       |        |    |               |     |        |                   |    |
| Toluene                       | 54 |       | 68     |    |               |     | 39, 40 | 14                | 27 |
| o-Toluidine                   | 55 |       |        |    |               |     | 41     | 16                |    |
| Total Coliform WP             |    |       |        |    |               |     |        | 34                |    |
| Total Coliform WS             |    |       |        |    |               |     |        | 342               |    |
| Total dissolved solids        |    |       | 66, 67 |    |               |     |        | 10, 18,<br>19, 20 | 24 |
| Total hardness                |    |       | 66     |    |               |     |        | 10, 18,<br>19     | 24 |
| Total Kjeldahl Nitrogen       |    | 76    | 68     |    |               |     | 39     | 10, 18,<br>19     |    |
| Total Nitrogen                |    |       | 68     |    |               |     |        | 10                |    |
| Total Organic Carbon (TOC)    |    | 76    | 66     |    |               |     | 39     | 12,<br>18, 19     |    |
| Total Organic Halides (TOX)   |    | 76    |        |    |               |     |        | 13                |    |
| Total Oxidized Nitrogen (TON) |    |       | 68     |    |               |     |        |                   |    |
| Total Phenolics (4-AAP)       |    |       | 67     |    |               |     |        | 13, 20            |    |
| Total Phosphorus              |    |       | 68     |    |               |     | 39     | 10, 18,<br>19     |    |
| Total solids at 105 °C        |    |       |        |    |               |     |        | 10, 18,<br>20     | 24 |
| Total suspended solids (TSS)  |    |       | 67     |    |               |     |        | 10, 18,<br>20     | 24 |
| Total volatile solids         |    |       |        |    |               |     |        | 10                |    |

| T (continued)             | AE     | Cal   | LLCRM | MB | RChem             | RGT  | Soil          |        | WP            | WS           |
|---------------------------|--------|-------|-------|----|-------------------|------|---------------|--------|---------------|--------------|
| Toxaphene                 |        |       |       |    |                   |      | 43            |        | 17            | 28           |
| 2,4,5-TP (Silvex)         |        |       |       |    |                   |      | 41            |        | 15            | 30           |
| TPH                       |        |       |       |    |                   |      | 40            | 48, 49 | 11            |              |
| Trichloroacetic Acid      |        |       |       |    |                   |      |               |        |               | 25           |
| 1,2,3-Trichlorobenzene    | 54     |       |       |    |                   |      | 39, 40        |        | 14            | 27           |
| 1,2,4-Trichlorobenzene    | 54, 55 |       | 68    |    |                   |      | 39,<br>40, 41 |        | 14, 16        | 27           |
| 1,1,1-Trichloroethane     | 54     |       | 68    |    |                   |      | 39, 40        |        | 14            | 27           |
| 1,1,2-Trichloroethane     | 54     |       | 68    |    |                   |      | 39, 40        |        | 14            | 27           |
| Trichloroethene           | 54     |       | 68    |    |                   |      | 39, 40        |        | 14            |              |
| Trichloroethlyene         | 54     |       |       |    |                   |      | 40            |        |               | 27           |
| Trichlorofluoromethane    | 54     |       |       |    |                   |      | 39, 40        |        | 14            | 27           |
| 2,4,5-Trichlorophenol     | 55     |       |       |    |                   |      | 40, 41        |        | 16            |              |
| 2,4,6-Trichlorophenol     | 55     |       |       |    |                   |      | 40, 41        |        | 16            |              |
| 1,2,3-Trichloropropane    | 54     |       |       |    |                   |      | 39            |        | 14, 16        | 27, 28<br>30 |
| Trichlorotrifluoromethane | 54     |       |       |    |                   |      |               |        |               |              |
| Triethylene glycol        |        |       |       |    |                   |      | 41            |        | 16            |              |
| Trifluralin               |        |       |       |    |                   |      |               |        | 17            | 28           |
| 1,2,4-Trimethylbenzene    | 54     |       |       |    |                   |      | 39, 40        |        | 14            | 27           |
| 1,3,5-Trimethylbenzene    | 54     |       |       |    |                   |      | 39, 40        |        | 14            | 27           |
| 1,3,5-Trinitrobenzene     |        |       |       |    |                   |      | 41            |        | 16            |              |
| 2,4,6-Trinitrotoluene     |        |       |       |    |                   |      | 41            |        | 16            |              |
| Tritium                   |        |       |       |    | 60, 61,<br>63     |      |               |        |               |              |
| Turbidity                 |        |       |       |    |                   |      |               |        | 13            | 26           |
|                           | _      |       |       |    |                   |      |               |        |               |              |
| U                         | AE     | Cal   | LLCRM | МВ | RChem             | RGT  | Soil          | UST    | WP            | WS           |
| Uranium                   |        | 77    |       |    | 60, 61,<br>62, 63 |      | 38            |        | 12            | 24           |
| UV 254 Absorbance         |        |       |       |    |                   |      |               |        |               | 26           |
|                           |        |       |       |    |                   |      |               |        |               |              |
| V                         | AE     | Cal   | LLCRM | MB | RChem             | RGT  | Soil          | UST    | WP            | WS           |
| Valeraldehyde (pentanal)  | 55     |       |       |    |                   |      |               |        |               |              |
| Vanadium                  |        | 77,78 | 67    |    |                   |      | 38, 43        |        | 12, 18,<br>20 | 24           |
| Vinyl acetate             | 54     |       |       |    |                   |      | 39            |        | 14            |              |
| Vinyl bromide             | 54     |       |       |    |                   |      |               |        |               |              |
| Vinyl chloride            | 54     |       | 68    |    |                   |      | 39, 40        |        | 14            | 27           |
| Χ                         | AF     | Cal   | LLCRM | МВ | RChem             | RGT  | Soil          | UST    | WP            | WS           |
|                           | 54     | Jul   | 68    |    | Horicili          | -nai |               | 301    |               | 27           |
| Xylenes, total            | 54     |       | 00    |    |                   |      | 39, 40        |        | 14,           |              |
| Υ                         | AE     | Cal   | LLCRM | MB | RChem             | RGT  | Soil          | UST    | WP            | WS           |
| Yttrium                   |        | 77    |       |    |                   |      |               |        |               |              |
| _                         |        |       |       |    |                   |      |               |        |               |              |
| Z                         | AE     | Cal   | LLCRM | MB | RChem             | RGT  | Soil          | UST    | WP            | WS           |
| Zinc                      | 56     | 77,78 | 67    |    | 60, 61,           |      | 38, 43        |        | 12, 18,       | 24           |



| A                       | ANATEL<br>PAT700 |  | SIEVERS 900,<br>5310 C, M9,<br>M5310 C |    |  |  |  | CLEANING<br>VALIDATION | CONDUCTIVITY |
|-------------------------|------------------|--|----------------------------------------|----|--|--|--|------------------------|--------------|
| Accuracy/Precision Sets |                  |  |                                        | 92 |  |  |  |                        |              |
| Autoreagent Sets        |                  |  | 91                                     |    |  |  |  |                        |              |

| В       | ANATEL<br>PAT700 |  | SIEVERS 900,<br>5310 C, M9,<br>M5310 C | analytik<br>Jena |  |  |    | CLEANING<br>VALIDATION | CONDUCTIVITY |  |
|---------|------------------|--|----------------------------------------|------------------|--|--|----|------------------------|--------------|--|
| Bottles |                  |  |                                        |                  |  |  | 99 |                        |              |  |

| С                                      | ANATEL<br>PAT700 | ANATEL<br>A643 | ANATEL<br>TOC600 | ANATEL<br>A-1000 | SIEVERS 900,<br>5310 C, M9,<br>M5310 C | SIEVERS<br>500 | analytik<br>Jena | OI<br>ANALYTICAL | SWAN | LIGHTHOUSE | MEMBRAPURE | CONSUMABLES | CLEANING<br>VALIDATION | REFERENCE<br>STANDARDS | CONDUCTIVITY |
|----------------------------------------|------------------|----------------|------------------|------------------|----------------------------------------|----------------|------------------|------------------|------|------------|------------|-------------|------------------------|------------------------|--------------|
| Calibration Kits                       | 88               | 89             | 90               | 90               | 91                                     | 92             | 93               | 94               | 98   |            | 98         |             |                        |                        |              |
| Caps                                   | 88               | 89             |                  |                  |                                        |                |                  |                  |      |            |            |             |                        |                        |              |
| Cleaning Validation                    |                  |                |                  |                  |                                        |                | 93               |                  |      |            |            |             | 100                    |                        |              |
| Conductivity Kits                      | 88               | 89             | 90               |                  | 91                                     | 92             |                  |                  |      |            |            |             |                        |                        | 103          |
| Conductivity - High-Level              |                  |                |                  |                  |                                        |                |                  |                  |      |            |            |             |                        |                        | 103          |
| Conductivity - Low-Level               |                  |                |                  |                  |                                        |                |                  |                  |      |            |            |             |                        |                        | 103          |
| Conductivity - Mid-Level               |                  |                |                  |                  |                                        |                |                  |                  |      |            |            |             |                        |                        | 103          |
| Conductivity - Mid-Level ASTM Solution |                  |                |                  |                  |                                        |                |                  |                  |      |            |            |             |                        |                        | 103          |
| Conductivity- High Level               |                  |                |                  |                  |                                        |                |                  |                  |      |            |            |             |                        |                        | 104          |
| Consumables                            | 88               | 89             | 90               |                  | 91                                     | 92             |                  | 94               |      |            |            | 99          |                        |                        |              |
| Custom Coupons                         |                  |                |                  |                  |                                        |                |                  |                  |      |            |            |             | 100                    |                        |              |

| F                 | ANATEL<br>PAT700 | ANATEL<br>A643 | ANATEL<br>TOC600 | ANATEL<br>A-1000 | SIEVERS 900,<br>5310 C, M9,<br>M5310 C | SIEVERS<br>500 | analytik<br>Jena | OI<br>ANALYTICAL | SWAN | LIGHTHOUSE | MEMBRAPURE | CONSUMABLES | CLEANING<br>VALIDATION | CONDUCTIVITY |
|-------------------|------------------|----------------|------------------|------------------|----------------------------------------|----------------|------------------|------------------|------|------------|------------|-------------|------------------------|--------------|
| Filters           |                  |                |                  |                  | 91                                     | 92             |                  |                  |      |            |            | 99          |                        |              |
| Function Test Kit |                  |                |                  |                  |                                        |                |                  |                  | 98   |            |            |             |                        |              |
| Full Cal Kit      |                  |                |                  |                  |                                        |                | 93               |                  |      |            |            |             |                        |              |

| н                                     | ANATEL<br>PAT700 | ANATEL<br>A643 |  | SIEVERS 900,<br>5310 C, M9,<br>M5310 C | SIEVERS<br>500 | analytik<br>Jena | OI<br>ANALYTICAL | LIGHTHOUSE |  | CLEANING<br>VALIDATION |     | CONDUCTIVITY |
|---------------------------------------|------------------|----------------|--|----------------------------------------|----------------|------------------|------------------|------------|--|------------------------|-----|--------------|
| High-Purity Water Reference Standards |                  |                |  |                                        |                |                  |                  |            |  |                        | 102 |              |

| 1                     | ANATEL<br>PAT700 | ANATEL<br>A643 | ANATEL<br>TOC600 | ANATEL<br>A-1000 | SIEVERS 900,<br>5310 C, M9,<br>M5310 C | SIEVERS<br>500 | analytik<br>Jena | OI<br>ANALYTICAL | SWAN | LIGHTHOUSE | MEMBRAPURE | CONSUMABLES | CLEANING<br>VALIDATION | REFERENCE<br>STANDARDS | CONDUCTIVITY |
|-----------------------|------------------|----------------|------------------|------------------|----------------------------------------|----------------|------------------|------------------|------|------------|------------|-------------|------------------------|------------------------|--------------|
| Inorganic Carbon CRMs |                  |                |                  |                  |                                        |                |                  |                  |      |            |            |             |                        | 102                    | N/A          |
| Individual CRMs       |                  |                |                  |                  |                                        |                |                  |                  |      |            |            |             |                        | 102                    | N/A          |

| L                   | ANATEL<br>PAT700 | ANATEL<br>A643 | ANATEL<br>TOC600 | ANATEL<br>A-1000 |    | SIEVERS<br>500 | analytik<br>Jena | OI<br>ANALYTICAL | SWAN | LIGHTHOUSE | MEMBRAPURE | CONSUMABLES | CLEANING<br>VALIDATION | REFERENCE<br>STANDARDS | CONDUCTIVITY |
|---------------------|------------------|----------------|------------------|------------------|----|----------------|------------------|------------------|------|------------|------------|-------------|------------------------|------------------------|--------------|
| Limited Cal Kit     |                  |                |                  |                  |    |                | 93               |                  |      |            |            |             |                        |                        |              |
| Linearity Sets      |                  |                |                  |                  | 91 | 92             |                  |                  |      |            |            |             |                        |                        |              |
| Multipoint Cal Sets |                  |                |                  |                  | 91 |                |                  |                  |      |            |            |             |                        |                        |              |

| Р                  | ANATEL<br>PAT700 |  | SIEVERS 900,<br>5310 C, M9,<br>M5310 C | analytik<br>Jena |  |  | CLEANING<br>VALIDATION |     | CONDUCTIVITY |
|--------------------|------------------|--|----------------------------------------|------------------|--|--|------------------------|-----|--------------|
| pH Buffer Products |                  |  |                                        |                  |  |  |                        | 102 |              |

| R                  | ANATEL<br>PAT700 | ANATEL<br>A643 | ANATEL<br>TOC600 | ANATEL<br>A-1000 | SIEVERS 900,<br>5310 C, M9,<br>M5310 C | SIEVERS<br>500 | analytik<br>Jena | OI<br>ANALYTICAL | SWAN | LIGHTHOUSE | MEMBRAPURE | CONSUMABLES | CLEANING<br>VALIDATION | REFERENCE<br>STANDARDS | CONDUCTIVITY |
|--------------------|------------------|----------------|------------------|------------------|----------------------------------------|----------------|------------------|------------------|------|------------|------------|-------------|------------------------|------------------------|--------------|
| Reagents           |                  |                |                  |                  | 91                                     |                |                  | 94               |      |            |            | 99          |                        |                        |              |
| Reagent Cartridges |                  |                |                  |                  | 91                                     |                |                  | 94               |      |            |            | 99          |                        |                        |              |
| Resin Beds         |                  |                |                  |                  | 91                                     |                |                  |                  |      |            |            |             |                        |                        |              |

| s                            | ANATEL<br>PAT700 | ANATEL<br>A643 | ANATEL<br>TOC600 | ANATEL<br>A-1000 | SIEVERS 900,<br>5310 C, M9,<br>M5310 C | SIEVERS<br>500 | analytik<br>Jena | OI<br>ANALYTICAL | SWAN | LIGHTHOUSE | MEMBRAPURE | CONSUMABLES | CLEANING<br>VALIDATION | REFERENCE<br>STANDARDS | CONDUCTIVITY |
|------------------------------|------------------|----------------|------------------|------------------|----------------------------------------|----------------|------------------|------------------|------|------------|------------|-------------|------------------------|------------------------|--------------|
| Sampling Kit w/Vial and Swab |                  |                |                  |                  |                                        |                |                  |                  |      |            |            |             | 100                    |                        |              |
| Specififity Sets             |                  |                |                  |                  | 91                                     | 92             |                  |                  |      |            |            |             |                        |                        |              |
| Service Kits                 |                  |                |                  |                  | 91                                     |                |                  |                  |      |            |            |             |                        |                        |              |
| Swabs                        |                  |                |                  |                  |                                        |                |                  |                  |      |            |            |             | 100                    |                        |              |
| Swabbing Templates           |                  |                |                  |                  |                                        |                |                  |                  |      |            |            |             | 100                    |                        |              |
| System Suitability Kits      | 88               | 89             | 90               | 90               | 91                                     | 92             | 93               | 94               | 98   | 98         | 98         |             |                        |                        |              |

| т      | ANATEL<br>PAT700 | ANATEL<br>A643 | ANATEL<br>TOC600 | ANATEL<br>A-1000 | SIEVERS 900,<br>5310 C, M9,<br>M5310 C | SIEVERS<br>500 | analytik<br>Jena | OI<br>ANALYTICAL | SWAN | LIGHTHOUSE | MEMBRAPURE | CONSUMABLES | REFERENCE<br>STANDARDS | CONDUCTIVITY |
|--------|------------------|----------------|------------------|------------------|----------------------------------------|----------------|------------------|------------------|------|------------|------------|-------------|------------------------|--------------|
| Tubing |                  |                |                  |                  | 91                                     | 92             |                  |                  |      |            |            | 99          | 101                    |              |

| U                  | ANATEL<br>PAT700 | ANATEL<br>A643 | ANATEL<br>TOC600 | ANATEL<br>A-1000 | SIEVERS 900,<br>5310 C, M9,<br>M5310 C | SIEVERS<br>500 | analytik<br>Jena | OI<br>ANALYTICAL | SWAN | LIGHTHOUSE | MEMBRAPURE | CONSUMABLES | CLEANING<br>VALIDATION | REFERENCE<br>STANDARDS | CONDUCTIVITY |
|--------------------|------------------|----------------|------------------|------------------|----------------------------------------|----------------|------------------|------------------|------|------------|------------|-------------|------------------------|------------------------|--------------|
| Ultra Low CRM Kits |                  |                |                  |                  |                                        |                |                  | 94               |      |            |            |             |                        |                        |              |
| UV Lamps           | 88               | 89             | 90               |                  | 91                                     | 92             |                  |                  |      |            |            | 99          |                        |                        |              |

| V               | ANATEL<br>PAT700 |    |    | SIEVERS 900,<br>5310 C, M9,<br>M5310 C |    | analytik<br>Jena |    |  |    | CLEANING<br>VALIDATION | CONDUCTIVITY |
|-----------------|------------------|----|----|----------------------------------------|----|------------------|----|--|----|------------------------|--------------|
| Validation Kits | 88               | 89 | 90 | 91                                     | 92 |                  | 94 |  |    |                        |              |
| Vials           | 88               | 89 |    | 91                                     | 92 |                  |    |  | 99 |                        |              |

| <b>A</b> - | · C                                                |                                                                                                                                                                                                                                 | N      | NELAC                                  | National Environmental Laboratory Accreditation Conference                                                                                                                                                            |
|------------|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A          | 4-AAP<br>A2LA<br>AE<br>BCH                         | 4 - Aminoantipyrene American Association for Laboratory Accreditation Air & emissions Benzene hexachloride                                                                                                                      |        | NELAP<br>NIST<br>NPDES<br>NQA<br>NTU   | National Environmental Laboratory Accreditation Program National Institute of Standards and Technology (U.S.) National Pollutant Discharge Elimination System National Quality Assurance Nephelometric turbidity unit |
| J          | BOD<br>BTEX                                        | Biochemical oxygen demand Benzene, toluene, ethylbenzene, and xylenes                                                                                                                                                           | 0 -    | - Q                                    |                                                                                                                                                                                                                       |
| С          | CALA<br>CFU<br>CLP                                 | Canadian Association for Laboratory Accreditation Colony-forming unit Contract laboratory program                                                                                                                               | 0<br>P | OES PAH PC units                       | Optical emission spectrometry  Polycyclic aromatic hydrocarbons  Platinum-cobalt                                                                                                                                      |
|            | COD<br>CofA<br>CRDL<br>CRM<br>CVAFS<br>CVAA<br>CWA | Chemical oxygen demand Certificate of analysis Contract required detection limit Certified reference material Cold vapor atomic fluorescence spectroscopy Cold vapor atomic absorption Clean Water Act                          | Q      | PCB<br>pci/kg<br>PE<br>pg<br>PT<br>PUF | Polychlorinated biphenyls Picocuries per kilogram Performance evaluation Picogram Proficiency test(ing) Polyurethane foam Quality control                                                                             |
| <b>D</b> - | - F                                                |                                                                                                                                                                                                                                 |        | QR                                     | QuiK Response                                                                                                                                                                                                         |
| D          | DBCP<br>DI                                         | Dibromochloropropane<br>Deionized                                                                                                                                                                                               | R -    | ·T                                     |                                                                                                                                                                                                                       |
| E          | EDB<br>EDD<br>ELAP<br>EPA<br>EPTIS                 | Ethylene dibromide also known as 1,2-Dibromoethane Electronic data deliverable Environmental Laboratory Accreditation Program Environmental Protection Agency European Proficiency Testing Information System                   | R<br>S | RCRA<br>RDX<br>RM<br>RTU<br>SCC        | Resource Conservation and Recovery Act Research department explosive (an explosive nitroamine) Reference material Ready-to-use Standards Council of Canada                                                            |
| F          | ERA FAQ FID FOPT                                   | Environmental Resource Associates  Frequently asked question Flame ionization detector Field of Proficiency Testing                                                                                                             | J      | SDWA<br>SGTheM<br>SI unit<br>SPE<br>SU | Safe Drinking Water Act Silica gel treated hexane extractable materials International System of units Solid-phase extraction Standard units                                                                           |
| G -        | -                                                  |                                                                                                                                                                                                                                 | т      | TCDD<br>TCLP                           | Tetrachlorodibenzo-p-dioxin                                                                                                                                                                                           |
| G<br>H     | GC HCH HEM HMX HPC HPLC                            | Gas chromatography  Hexachlorocyclohexane Hexane extractable material Nitroamine high explosive Heterotrophic plate count High performance liquid chromatography                                                                |        | TCP TKN TNI TOC TOX TPH TSS            | Toxicity characteristic leaching procedure Trichloropropane Total Kjeldahl (kel'dahl) Nitrogen The NELAC Institute Total organic carbon Total organic halides Total petroleum hydrocarbons Total suspended solids     |
| ı          | IC<br>ICP                                          | Ion chromatography<br>Inductively coupled plasma                                                                                                                                                                                | U-     | · Z                                    |                                                                                                                                                                                                                       |
| L-         | IR<br>ISE<br>ISO                                   | Infrared Ion selective electrode International Organization for Standardization                                                                                                                                                 | U      | UCMR<br>UKAS<br>µmhos<br>UPLC          | Unregulated contaminant monitoring rule United Kingdom Accreditation Service Micromhos (measure of electrical conductivity of a solution) Ultra performance liquid chromatography                                     |
|            | LAS<br>LIMS                                        | Linear alkylbenzene sulphonates<br>Laboratory information management system                                                                                                                                                     | V      | VOA<br>VOC                             | Volatile organic analysis<br>Volatile organic compounds                                                                                                                                                               |
| М          | MBAS<br>MCPA<br>MCPP                               | Methylene blue active substances 2-methyl-4-chlorophenoxyacetic acid Mecoprop (chlorophenoxy herbicide)                                                                                                                         | W      | WP<br>WS<br>WWTP                       | Water pollution<br>Water supply<br>Wastewater treatment plant                                                                                                                                                         |
|            | MEK MF mg mg/dscm MIBK MOE MPN MRAD MTBE           | Methyl ethyl ketone Membrane filtration Milligrams Milligrams per dry standard cubic meter Methyl isobutyl ketone Ministry of the Environment (Ontario) Most probable number Multi-media radiochemistry Methyl tert-butyl ether | Z      | Z-score                                | Statistical measurement of a score's relationship to the mean in a group of scores                                                                                                                                    |

| Notes |  |  |
|-------|--|--|
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |

| Notes |  |
|-------|--|
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |

# 5 Easy Ways to Order

### 1. Online

eraqc.com

### 2. Phone

800.372.0122 303.431.8454

#### 3. Fax

303.421.0159

### 4. Mail

ERA 16341 Table Mountain Pkwy Golden, CO 80403

### 5. Email

info@eraqc.com (US) era\_europe\_sales@waters.com (Europe)

### Hours

6:00 am - 5:00 pm (Mountain Time) Mon-Fri

### **Credit Cards**

Waters ERA accepts MasterCard, VISA, American Express, and Discover.









# International

For international orders, please contact your authorized Waters ERA Sales Partner. For a complete list of Waters ERA Sales Partners, visit us online at eraqc.com/globalpartners.

# Terms and Conditions

## Confirmation (U.S.)

All orders are confirmed to the purchasing contact as long as fax or email information is provided. Please review the confirmation immediately to ensure the accuracy of your order.

### Terms (U.S.)

Terms are net 30 days. Freight charges are prepaid and added to the invoice. A \$15 charge is added to each invoice per shipment to cover regulated materials packaging and handling.

For most current Terms and Conditions, please visit Waters Terms and Conditions.

## Fast Two-day Shipping (U.S.)

For quick and reliable delivery, all orders are shipped via two-day delivery service unless otherwise requested.

### **International Terms**

Orders for environmental products ship from the Waters ERA facility in Golden, Colorado. Orders from outside the United States must be pre-paid in U.S. dollars by either credit card or wire transfer. A \$25.00 bank wire transfer fee is assessed with all payments made through a wire transfer. Customer is responsible for all duties, taxes, and customs clearance.

## Safety

Waters ERA products may be hazardous and are intended for use by professional laboratory personnel trained in the competent handling of such materials. Responsibility for the safe use of Waters ERA products rests entirely with the purchaser and user. If you need a Safety Data Sheet (SDS) for any Waters ERA product, please visit eraqc.com or call +1.303.431.8454.

# Return/Replacement Policy

Please check all orders immediately upon receipt for accuracy and to ensure that there is no damage. Waters ERA will immediately correct any problems that are reported within five working days of receipt.

NO OTHER WARRANTY, WHETHER EXPRESS OR IMPLIED, IS MADE WITH RESPECT TO THE PRODUCTS AND/OR SERVICES. WATERS ERA EXPRESSLY EXCLUDES THE IMPLIED WARRANTIES OF MERCHANTABILITY AND OF FITNESS FOR A PARTICULAR PURPOSE. WATERS ERA SHALL NOT BE LIABLE FOR CONSEQUENTIAL, INCIDENTAL, SPECIAL OR ANY OTHER INDIRECT DAMAGES RESULTING FROM ECONOMIC LOSS.

















Waters ERA products manufactured at the Golden, CO facility are accredited to ISO 17034, ISO 17025 and ISO 17043, as defined by the Scopes of Accreditation, by American Association of Laboratory Accreditation (A2LA) and the Golden, CO facility is registered to ISO 9001 by National Quality Assurance (NQA).

Waters ERA products manufactured at the Golden, CO facility are accredited to ISO 17034 and ISO 17043, as defined by the Scopes of Accreditation, by entidad mexicana de acreditación, a.c., (EMA) and may be referenced at www.ema.org.mx.

Waters ERA products manufactured at the Wexford, Ireland facility are accredited to ISO 17034 and ISO 17025, as defined by the Schedules of Accreditation, by the Irish National Accreditation Board (INAB).

### **Environmental Resource Associates, Inc.**

16341 Table Mountain Pkwy Golden, CO 80403 T: 800.372.0122 (or) 303.431.8454

F: 303.421.0159

Domestic: info@eraqc.com

International: global\_era@waters.com

### Waters ERA - Europe

Waters Technologies Ireland Ltd. IDA Business Park Drinagh, Wexford Ireland T: 353 53 91 60549 era\_europe\_sales@waters.com

eraqc.com



Waters, The Science of What's Possible, ERA, eDATA, QuiK Response, and UPLC are trademarks of Waters Corporation. All other trademarks are the property of their respective owners.