

# Automated Sample Processing of POPs with No Dichloromethane and Low Volume Solvent Use

Ruud Addink and Tom Hall Fluid Management Systems Billerica, MA



#### Introduction

- POPs (PCDD/Fs, PCBs) continue to attract interest around the world due to strict regulations in force in many countries (Stockholm Convention).
- Rapid sample clean up and analysis needed for many laboratories processing samples.
- Processing times and solvent use are important considerations.



#### Manual Clean Up

- Traditional Soxhlet extraction can take 24-36 h depending on matrix. Labor and time intensive; uses more electrical power than automated options.
- Manual preparative column chromatography with on-site made columns for cleanup.
- Acidified silica; alumina; carbon.
- Automated cleanup reduces background and is less time consuming.



### **Automating Sample Prep**

- Automated Pressurized Liquid Extraction (PLE) for sample extraction is fast (60 min), efficient (120 °C, 1500 psi), green (less power), reliable (long track record).
- Solid Phase Extraction for serum and water is fully automated, fast (less time than manual), low background (closed system), versatile for many cartridges and sample sizes.
- Low Solvent clean up system: fast (40-60 min), no DCM used, low solvent (150-250 mLs).



### EP-110 Clean Up

Touch Screen Control

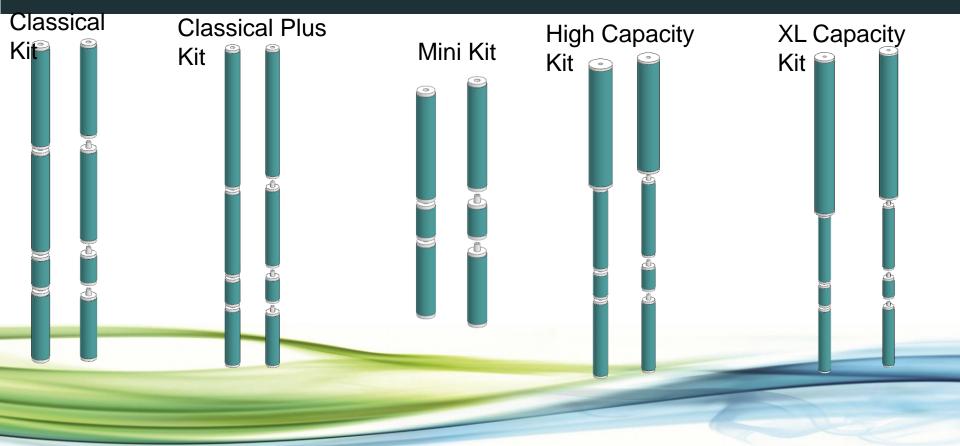
On lir rator, during parallel

On line evaporator, starts during collection



### System Characteristics

- Control module that pilots valve drive modules connected to a pump and pressure modules responsible for solvent flow in the valve module.
- Built in computer that does not need a stand-alone pc.
- Easy programming and software editing provides custom made sequences of events that drive the required solvent at the right place at the right moment.
- Low pressure (5-30 psi). Flow rates of 5-10mL/min are used. Nitrogen valve enables push through sample lines (optional).




#### Columns (1)





### Columns (2)





#### Columns

- Silica PCB-free acidic silica gel column (5 different capacities).
- Carbon PCB-free carbon/celite column.
- Alumina PCB-free basic alumina column.
- Packed in disposable Teflon tubes; individually sealed packaging; production in clean room environment.



#### **EP-110 Features**

- EP-110 fully automated sample load and elution.
- Load Sample Extracts in hexane directly onto the system with no Manual Pretreatment
- Easy to perform QC sample simultaneously with a Real sample.
  - 2 samples per module
- Different column configuration: silica-carbon-alumina.
- Uses no DCM, only Hexane and Toluene.
- Total Clean Up time 40-60 min.
- Low volumes 150-250 mLs.



### Program

- Condition columns with hexane (step 1).
- Load sample in hexane onto silica (step 2).
- Elute silica column with hexane, analytes onto carbon and alumina (step 3).
- Flush with toluene (step 4).
- Elute carbon with toluene (step 5). Collect all PCDD/Fs and co-planary PCBs (F1).
- Elute alumina with toluene (step 6), PCBs fraction collected here (F2).



### SuperVap 12 50ml Concentration/Evaporation





#### SuperVap Concentration/Evaporation

- System pre-heated to 55-60 °C.
- Samples evaporated at stable T under 5-6 psi nitrogen.
- 1 mL extract vial transferred to GC vial (can have direct-to-vial feature).
- Recovery standards added (nonane/dodecane).
- Extract taken to 10 uL volume with a gentle stream of nitrogen at ambient temperature.



#### FMS SuperVap 24 Vial Concentrator/Evaporator





## Direct to GC Vial



**Glass Evaporation tube** 

**GC** vial





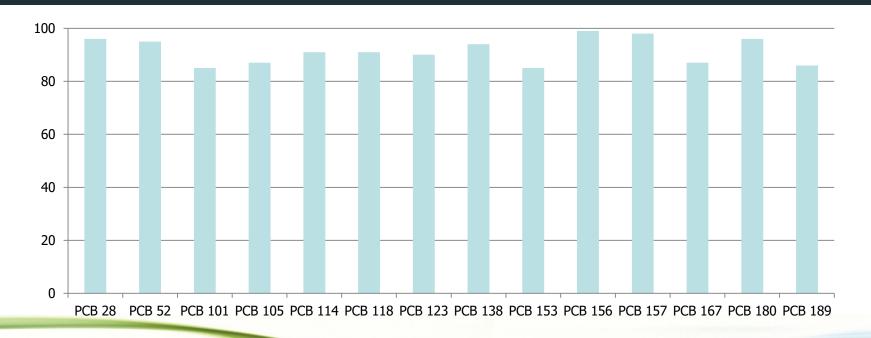
# DFS HRGC/HRMS






#### Mini Kit Data

- Used automated SPE for serum extraction
- Clean up with mini silica, carbon, mini alumina
- Total time for clean up 40 min
- Total solvent volume 150 mLs
- No DCM




# 13C PCDD/F serum





#### 13C PCBs serum





#### High Capacity Kit Data

- Used automated PLE for egg, feed, soil extraction
- Clean up with high capacity silica, carbon, alumina
- Total time for clean up 60 min
- Total solvent volume 250 mLs
- No DCM



# 13C Recoveries DD/F Matrices

|                         | Sediment |         |         | Fish Oil | Fatty    |        |
|-------------------------|----------|---------|---------|----------|----------|--------|
| Compound Name           | 1q       | Feed 2g | Egg 8 g | 40 mg    | Acid 2 g | Hexane |
| 2378-TCDF 13C12 STD     | 78       | 89      | 75      | 69       | 93       | 78     |
| 2378-TCDD 13C12 STD     | 92       | 100     | 86      | 96       | 92       | 93     |
| 12378-PeCDF 13C12 STD   | 80       | 91      | 70      | 91       | 97       | 82     |
| 23478-PeCDF 13C12 STD   | 81       | 90      | 70      | 92       | 103      | 80     |
| 12378-PeCDD 13C12 STD   | 91       | 100     | 75      | 105      | 104      | 90     |
| 123478-HxCDF 13C12 STD  | 79       | 95      | 74      | 93       | 92       | 84     |
| 123678-HxCDF 13C12 STD  | 78       | 81      | 76      | 96       | 90       | 85     |
| 234678-HxCDF 13C12 STD  | 83       | 91      | 78      | 87       | 96       | 86     |
| 123789-HxCDF 13C12 STD  | 88       | 93      | 80      | 99       | 90       | 83     |
| 123478-HxCDD 13C12 STD  | 84       | 92      | 77      | 86       | 97       | 88     |
| 123678-HxCDD 13C12 STD  | 73       | 72      | 67      | 83       | 93       | 81     |
| 1234678-HpCDF 13C12 STD | 69       | 79      | 68      | 87       | 88       | 69     |
| 1234789-HpCDF 13C12 STD | 82       | 71      | 76      | 80       | 92       | 79     |
| 1234678-HpCDD 13C12 STD | 87       | 95      | 80      | 98       | 92       | 79     |
| OCDD 13C12 STD          | 70       | 77      | 64      | 77       | 80       | 64     |



# 13C PCBs Recoveries Matrices

|         | Sediment | Fish Oil | Fatty<br>Acid | Fatty Acid | Hexane |
|---------|----------|----------|---------------|------------|--------|
|         | 1 g      | 40mg     | 1.5 g         | 2 g        |        |
| PCB 28  | 66       | 67       | 68            | 60         | 86     |
| PCB 52  | 68       | 69       | 70            | 71         | 86     |
| PCB 77  | 94       | 90       | 101           | 87         | 86     |
| PCB 81  | 88       | 83       | 95            | 93         | 75     |
| PCB 101 | 77       | 78       | 80            | 77         | 87     |
| PCB 105 | 98       | 112      | 90            | 88         | 95     |
| PCB 114 | 108      | 109      | 87            | 89         | 97     |
| PCB 118 | 92       | 110      | 88            | 90         | 89     |
| PCB 123 | 112      | 115      | 82            | 86         | 98     |
| PCB 126 | 92       | 89       | 88            | 79         | 77     |
| PCB 138 | 75       | 74       | 75            | 72         | 90     |
| PCB 153 | 71       | 71       | 71            | 65         | 84     |
| PCB 156 | 100      | 95       | 98            | 94         | 98     |
| PCB 157 | 98       | 90       | 87            | 92         | 91     |
| PCB 167 | 92       | 89       | 87            | 87         | 86     |
| PCB 169 | na       | 93       | 106           | 103        | 100    |
| PCB 170 | 99       | 94       | 90            | 98         | 100    |
| PCB 180 | 96       | 85       | 88            | 89         | 88     |
| PCB 189 | 106      | 78       | 94            | 100        | 101    |



# FILID AND STREET STREET SECTION SECTIO

|         | Sediment   |  |
|---------|------------|--|
|         | <b>1</b> g |  |
| BDE-28  | 67         |  |
| BDE-47  | 71         |  |
| BDE-99  | 81         |  |
| BDE-100 | 80         |  |
| BDE-153 | 79         |  |
| BDE-154 | 77         |  |
| BDE-183 | 80         |  |
| BDE-209 | 60         |  |



# Time from sample to results

|                               | Extraction | Concentration | Cleanup | Concentration | GC/MS | Total Time |
|-------------------------------|------------|---------------|---------|---------------|-------|------------|
| Dioxins & PCBs in Serum       | 45         | 30            | 40      | 60            | 60    | 235 min    |
| Dioxins & PCBs in Soil        | 60         | 30            | 60      | 60            | 60    | 270 min    |
| Dioxins & PCBs in Fatty Foods | 60         | 30            | 60      | 60            | 60    | 270 min    |
| Dioxins & PCBs in Oil         | 0          | 0             | 60      | 60            | 60    | 180 min    |



#### Conclusions

- PLE/SPE and EP-110 with silica-carbon-alumina configuration deliver very good recoveries for various matrices.
- EP-110 is Green option with low solvent and power use.
- Clean up step time between 40 and 60 min.
- EP-110 uses no DCM.
- Low solvent use 150-250 mLs.
- EP-110 delivers the extract directly to the SuperVap
  - SuperVap concentrates directly into a GC Vial
- Total time from sample to data between 3-4.5 h.
- PLE/SPE, SuperVap and EP-110 can be purchased in one system.