

# High Throughput, Solid Phase Extraction and Concentration of PFAS/PFOS in Waste Water Using EPA Method 533 and 537.1

Fluid Management Systems
Billerica, MA USA



# Introduction

- Perfluoralkylated compounds contain a perfluorinated or polyfluorinated carbon chain moiety such as  $F(CF_2)_n$  or  $F(CF_2)_n$  ( $C_2H_4$ )<sub>n</sub>.
- These make up a large group of persistent chemicals (POPs) used in industrial processes and consumer applications:
  - Stain-Resistant Coatings for textiles and carpets
  - Grease-Proof Coatings for paper products approved for food contact
  - Firefighting Foams
  - Mining and Oil Well Surfactants
  - Floor Polishes
  - Insecticide formulations



# Origin

- Industrial Sites
- Airport Fire Training Areas
- Wastewater Treatment Facilities
- Widespread use for over 60 years
- Very resistant to degradation
- Ubiquitous Compound in the Environment



# Global Health concerns

- Human exposure is linked to adverse effects
  - Developmental issues in off-spring
  - Cancer
  - Immune system suppression
  - Endocrine disruption
  - Elevated levels of Cholesterol
  - Obesity



### Source concerns

- Many water sources worldwide are found to be contaminated.
- Two compounds most studied:
  - Perfluoroctane sulphonate (PFOS)
  - Perfluoroctannoic acid (PFOA)
- Millions have been exposed through Drinking water supplies in the US and exceed the lifetime advisory of 70ng/L for these compounds



# Regulation

 PFOS is now subject to varying but increasing levels of control in several countries.

 PFOA, also a widespread contaminant but with a far lower bioaccumulation potential, is still under evaluation.



# The Analysis of PFCs

- Tens of Thousands of Samples are now being analyzed and more areas of concern are starting to be analyzed for PFAS/PFOS
  - Drinking Water
  - Waste Water
  - Human Serum
  - Biota
  - Soils



# Challenges in the Analysis of PFCs

- The Analytical Systems are expensive
  - UPLC/MS systems
    - Require expertise in a new technology
- Manual Sample Prep processes
  - Inconsistent results
  - Elevated Background issues
  - Labor intensive
  - Extraction can take up to 2 hours
    - Dirty samples
  - Concentration can take up to 2 hours



# Optimizing the PFC Analysis Workflow

- Automate the Sample Prep Workflow
  - Automate the Solid Phase Extraction Step
  - Automate the Concentration/Evaporation Step
- Automated, Semi Automated SPE extractions and Concentration
  - Reduces Human Error
  - Reduces Outside contamination
  - Reduces Solvent Usage
  - Reduces Labor
- Use SPE solutions to deliver consistent, reproducible results



# Laboratory Workflow Breakdown





# Comparison of Manual SPE vs. Automated SPE Methods

#### **Manual**

Open to laboratory background

Uses >60mls solvent

Filtration process

No emulsions formed

Wide Selectivity (adsorbent)

Requires water removal

Labor intensive requires monitoring

#### **Automated SPE**

Closed system

Uses <60mls solvent

Filtration process

No emulsions formed

Wide Selectivity (adsorbent)

In-line water removal

Fast and Unattended



# Comparison of Manual SPE vs. Automated SPE Methods

#### **Manual SPE**

Separates Aqueous and Organic Waste

<60mls solvent evaporate

Run times are ~ 45 minutes

**Technician Time 25 minutes** 

Physical transfer and Concentration steps

Concentration steps 45 minutes

#### **Automated/Semi Auto SPE**

Separates Aqueous and Organic Waste

<60mls solvent to evaporate

Run times are ~ 35 minutes or less

Technician time 5 minutes

Automatic and Direct to Concentration delivery and completion

Concentration step 45 minutes ready for injection



#### Reasons for Semi-Automated SPE

- Reduced solvent
- Reduced Actions
- Simplified procedures
- Semi-Automated versus Manual protocols = Reproducibility
- Increased Sample Throughput
- Low cost compared to Automated solutions



# **Determining Factors**

- Ability to load samples by vacuum consistently.
- Ability to dry cartridges by both vacuum and positive gas pressure (N2 or CO2).
- Easily handle a wide variety of cartridge designs and sizes without cumbersome modifications.
- Simple Sample delivery
- Bottle Rinse

# Fluid Management Systems Fluid Management Systems Front end for LC/MS



EconoTrace® PFC



TurboTrace® PFC



TurboTrace® Parallel Sequential







#### **Automated Concentration for PFAs**

- SuperVap PFC
  - 24 positions
  - 15ml Conical vials



# Fluid Management Systems Front end for GC/MS and LC/MS







**EZPFC** 







#### **Sample Analysis Work Flow**

#### **Automated Sample Prep Time**



Solid Phase Extraction
35 Minutes



Solid Phase Extraction 35 Minutes



**Semi Automated Sample Prep Time** 

= 80 Minutes



Concentration

45 Minutes

= 80 Minutes



# Objective for Semi Automation

- Use as many features as possible from the Automated systems and implement them into a Semi automated platform
- Develop as many SPE procedures for the testing lab using a single extraction platform.
- Minimize manual steps to lessen error and maximize limited man hours



### Goal

#### Self Installable

Unpacking and Installation/training video

#### Easy to Operate

No Computers or Electronics to fail or maintain

#### Semi - Automated

 Hyphenates the entire Solid Phase Extraction Process – Extraction, Bottle Rinse, Inline Drying and Optional Direct to GC Vial Concentration

#### Fast

- The fastest sample processing available for SPE
- Run up to six samples simultaneously
- Vacuum for fast loading of large volume samples
- Unattended Sample loading walkaway time

#### Closed system

Eliminate potential outside contamination



# Goal

#### Efficient

- Uses all SPE cartridge sizes
- Dedicated manifold for cartridge conditioning and sample loading
- Dedicated manifold for extraction and extracts
- Separates Organic from Aqueous waste
- Vacuum cartridge drying, Nitrogen cartridge drying or combined
- Automated Bottle Rinse and Elution
- Inline Extract Drying
- Small number of components to clean

#### Low to No Capital Expense





# EZPFC<sup>®</sup>



EZPFC 12 sample



# **System Components**

**No Teflon** 

**Tubing - High Density Polyethylene** 

Fittings - Delrin

Cartridge Adapters – Medical Grade Polypropylene



**System Layout** Stage 1 Manifold Vacuum Sample Cartridge Gauge **Bottles** Conditioning and Vacuum Sample Loading Regulator Sample Rinse Bottles **Stopcocks** Stage 2 Manifold Nitrogen **Elution** Pressure Gauge Nitrogen Regulator Nitrogen Valve Stage 1/2 Valve Waste Valve Base

# Nitrogen for Bottle Rinse and Cartridge Drying





# Control Valve Layout



#### **Cartridge Conditioning (Stage 1, Organic Waste)**





Flow Path



#### Sample Loading (Stage 1, Aqueous Waste)





# Sample Bottle Rinse (Stage 1)







#### Cartridge Drying- Nitrogen/Vacuum







Nitrogen Valve Stage 1/2 Valve Waste Valve



#### Sample Elution (Stage 2)



Nitrogen Stage Waste Valve Valve



Flow Path



# PFAs Methods

- EPA 537.1
- EPA 537 v1.1
- EPA 533
- EPA 8327 with 3512: PFAS in drinking, surface, wastewater 24 compounds; no SPE; mixing 1:1 with solvent and add standards (isotope dilution); filtration; LC/MS/MS
- EPA 8327 also for solids but not specified yet how (method not finalized)



### PFAs Methods

- ASTM 7968 is for 21 PFAS mostly sand and soil, solvent extraction and filtration, LC/MS
- ASTM 7979 similar to EPA 8327
- ISO 25101: 2009 this is SPE method with WAX cartridge for non-particulate or low-grade particulate water samples
- DOD QSM 5.3: PFAS in non-drinking water with SPE and isotope dilution, LC/MS/MS





#### **Automated Concentration for PFAs**

- SuperVap PFC
  - 24 positions
  - 15ml Conical vials
  - Timed Endpoint





#### Concentration Functionality

- Self Installable
  - Video unpacking, installation and training video
- Preprogrammed with most common temperature settings
- 6 (250mL) and 12 (50mL) position models for extractions, direct-to-vial connections
- Dry bath heating element
- Time based endpoint
- Savable temperature log



### **Can this Handle Dirty Samples?**

### Typical Cartridge can have problems!

- 6ml 500mg DVB
  - Doesn't do well
  - Frit Surface Area is to small

#### Yes, A Cartridge will work

- 25ml 500mg DVB cartridge
  - Does well
  - 3X the Frit Surface Area





#### FMS, Inc. Plastic Filtration Wool

#### **Delrin Plastic Wool**

- Irregular random stranding
- Slows Particles to the Uniform Frit
- Prevents Clogging







## Prepping the 6ml Cartridge with Plastic Filtration Wool

### 6ml 500mg DVB cartridge with Plastic wool

- Take a little and push it into the barrel of the syringe until it touches the cartridge Frit
- The Sample will not clog, it will take longer to process







#### **Dirty Sample from a Customer**





#### S Industrial 433 Matrix 250ml







### FMS 6ml and 25ml Cartridges







# 250 ml run to completion on 6 ml cartridge with Plastic Wool







#### 250ml run to completion 25ml cartridge





## Clean up is easy with no cross contamination

- Back Flush the sample line into the original sample bottle with an IPA non-Teflon squirt bottle.
- Wash the inside of the bottle cap with IPA squirt bottle
- Wash Cartridge Adapters with IPA squirt bottle or sonicate in a beaker
- Ready for the next 12 samples



### EZPFC<sup>®</sup>



EZPFC 12 Sample System



#### EPA 537.1





### PFAS Background





### EPA 533





#### Semi-Automated SPE in Summary

- EZPFC and SuperVap systems are easy to use and install
  - Complete Water Sample Prep Workflow
- Low cost, High throughput, Low maintenance solution
- EZPFC Extractions and Concentration
  - Closed System Reduces Contamination
  - Reduces Human error



### Summary

- FMS semi-automated SPE and SuperVap systems deliver consistent, reproducible results
- Handles a wide range of Sample sizes and matrix types
- Uses all SPE Cartridge sizes
- Comply with existing methods that require vacuum, positive pressure and precise delivery of sample and solvents



### Summary

- New Solid Phase Extraction Chemistries and Methods are continuously being developed
- EZPFC
  - Designed for Semi-Automated PFAS Extractions
  - SuperVap PFC Concentrator for 24 samples
- Capable of performing in line extract drying and/or Cartridge extract clean-ups

