

$EZSpe^{TM}$

Simple & Quick Solid Phase Extraction for Water & Waste Water Analysis

EZSpe[™]

Simple & Quick Solid Phase Extraction for Water & Waste Water Analysis

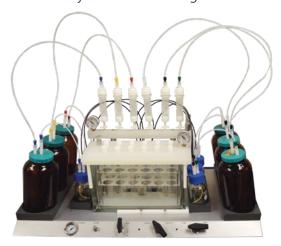
With EZSpe you can perform solid phase extractions for 6 samples in less than 50 minutes achieving high recoveries and excellent precision for all analytes.

Simple to Operate No Computer or Electronics

Fast Runs 6 Samples in 20 ~ 50 min (depending on sample size)

High ThroughputRuns 6 Samples in ParallelFlexibleUses All SPE Cartridge Sizes

Semi Automated Vacuum Sample Loading & Valve Selection for Separating


Aqueous and Organic Waste

Quality Consumables Guaranteed Certified Cartridges

Bottle Rinse Automated Bottle Rinse

In-Line Drying
Reliable
Zero Cross-Contamination
Elution In-line Extract Drying
No Maintenance Required
No Shared Tubing & Fittings

After 30 years of leading automation in the field of Dioxin & PCBs analysis, FMS introduces EZSpe to further simplify the Solid Phase Extraction process and make it easier to perform. The EZSpe impressive performance allows labratories to reduce turnaround time and increase quality of the water & waste water analysis while reducing the cost.

Using vacuum & nitrogen, the EZSpe automatically loads the samples, rinses the sample bottle and delivers the solvent to the SPE cartridges. The analytes of interest are extracted and then dried using a sodium sulfate cartridge to remove all water. The final extract can be delivered directly to the "Direct to GC vial Vessel" ready for final concentration in the FMS SuperVap®. The process saves both labor and time.

Applications:

Drinking Water

Waste Water

Blood

Milk

Beverages

With the EZSpe you can run multi cartridge, multi fractionation applications for any SPE method requiring more than one cartridge or fraction.

The EZSpe system is designed to streamline your laboratory's workflow and increase productivity by automating the manual steps in your sample preparation process. The EZSpe system uses existing manual techniques. EPA Methods 625 and 8270D call for the extraction and analysis of

semi-volatile analytes in various matrices. Target analytes mentioned in the method cover a wide range of compound classes resulting in reporting lists that often approach hundreds of compounds.

Compound Name

EPA Method 508 Recoveries

Compound Name	Average %
TCMX	70
Alpha - BHC	81.6
Beta- BHC	93.9
Gamma- BHC (Lindane)	83.1
Delta- BHC	98.9
Heptachlor	82.5
Aldrin	80
Heptachlor Epoxide	89.8
Endosulfan I	87.8
4, 4- DDE	84
Dieldrin	85.9
Endrin	70.6
Endosulfan II	90.5
Endrin Aldehyde	119.1
4, 4 -DDD	81.7
Endosulfan sulfate	95
4,4 -DDT	96.2
Endrin Ketone	110.9
Methoxyclor	92.5
PCB-209	77.3

EPA Method 8270 Recoveries

Compound Name	Average (%)
Acenaphthylene	96
Benzyl butyl phthalate	93
Bis(2-ethylhexyl)phthalate	85
2-Chloronaphthalene	93
Di-n-butylphthalate	93
1,3-Dichlorobenzene	83
Diethylphthalate	108
Dimethylphthalate	104
Hexachloroethane	86
Naphthalene	91
2-Chlorophenol	100
2-Nitrophenol	94
Phenol	93
N-Nitrosodimethylamine	50
Aniline	91
Benzyl Alcohol	93
4-Chloroaniline	87
1,4-Dinitrobenzene	84
2-Methylphenol	93
3/4-Methylphenol	94
1-Methylnaphthalene	94
2-Methylnaphthalene	95
3-Nitroaniline	89
2-Nitroaniline	95
Pyridine	95

EPA Method 525.3 Recoveries

Average (%)

1,3-dimethyl-nitrobenzene	102.8
Acenaphthylene	92.6
Alachlor	106.8
Alpha Chlordane	100.6
Atrazine	120.1
Butachlor	124.9
Butylate	119.5
Carboxin	75.0
Chrysene-d12	91.1
Cycloate	114.4
DDD	109.0
DDE	101.1
Diazinon	97.4
Dieldrin	101.1
Dimethyl phthalate	105.5
Disulfoton	91.0
Endosulfan I	121.4
Endrin	120.2
Heptachlor epoxide	111.9
Isophorone	108.4
Methoxychlor	99.8
Metolachlor	112.0
Nanopropamide	110.4
Perylene-d12	105.9
Phenamiphos	109.4
Phenanthrene	104.8
Phenanthrene-d10	96.8
Prometon	119.1
Prometryn	122.8
Pyrene-d10	101.0
Simazine	123.0
Terbufos	107.8
Trans-Nonachlor	97.3
Trifluralin	107.7

Supports EPA Methods:

EPA Method 506	Phthalates and Adipate Esters
EPA Method 508.1	Chlorinated Pesticides, Herbicides, and Organohali des
EPA Method 515.2	Chlorinated Acids
EPA Method 521	Nitrosamines
EPA Method 525.2	Semi-volatiles
EPA Method 526	Semi-volatiles
EPA Method 527	Selected Pesticides and

Flame Retardants

Phenols EPA Method 528 EPA Method 529 Explosives

Phenylurea Compounds **EPA Method 532** Chloroacetanilide and other **EPA Method 535** Acetamide Herbicides

EPA Method 548.1 Endothall

EPA Method 549.2 Diquat and Paraquat

EPA Method 550.1 PAH's

EPA Method 552.1 Haloacetic Acids and Dalapon EPA Method 553 Benzidines and Nitrogen Containing Pesticides

EPA Method 608 Chlorinated Pesticides and PCB's

EPA Method 1613 Dioxin

EPA Method 1664A Oil and Grease and SGT-HEM EPA Method 1668A Toxic PCB's by Isotope Dilution

and GC/MS

Pharmaceutical and Personal EPA Method 1694

Care Products

Phthalate esters EPA Method 8061

TCLP Organochlorine pesticides EPA Method 8081

EPA Method 8082 PCB's EPA Method 8095 Explosives

Organophosphorus pesticides EPA Method 8141

EPA Method 8270 Semi Volatiles

EPA Method 8321 TCLP Phenoxyacid herbicides EPA Method 8330 Nitroaromatics / Nitramines

"Direct-to-Vial Concentration"

The SuperVap-12 standalone direct-to-vial evaporation/ concentration system is the ideal solution for performing the final evaporation and concentration step. SuperVap® evaporates the extracts and delivers final extracts in GC vials ready for GC/MS analysis.

